Flagellin Redundancy in Caulobacter crescentus and Its Implications for Flagellar Filament Assembly

被引:37
作者
Faulds-Pain, Alexandra [1 ,2 ]
Birchall, Christopher [1 ,2 ]
Aldridge, Christine [1 ,2 ]
Smith, Wendy D. [1 ,2 ]
Grimaldi, Giulia [1 ,2 ]
Nakamura, Shuichi [3 ]
Miyata, Tomoko [3 ]
Gray, Joe
Li, Guanglai [4 ]
Tang, Jay X. [4 ]
Namba, Keiichi [3 ,5 ]
Minamino, Tohru [3 ,5 ]
Aldridge, Phillip D. [1 ,2 ]
机构
[1] Newcastle Univ, Ctr Bacterial Cell Biol, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[2] Newcastle Univ, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[3] Osaka Univ, Grad Sch Frontier Biosci, Suita, Osaka 5650871, Japan
[4] Brown Univ, Dept Phys, Providence, RI 02912 USA
[5] JST, Dynam NanoMachine Project, ICORP, Suita, Osaka 5650871, Japan
基金
英国生物技术与生命科学研究理事会;
关键词
III SECRETION CHAPERONE; BACTERIAL-CELL-CYCLE; PHASE VARIATION; SALMONELLA-ENTERICA; HELICOBACTER-PYLORI; GENE-EXPRESSION; MOTILITY; IDENTIFICATION; GLYCOSYLATION; TRANSCRIPTION;
D O I
10.1128/JB.01172-10
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bacterial flagella play key roles in surface attachment and host-bacterial interactions as well as driving motility. Here, we have investigated the ability of Caulobacter crescentus to assemble its flagellar filament from six flagellins: FljJ, FljK, FljL, FljM, FljN, and FljO. Flagellin gene deletion combinations exhibited a range of phenotypes from no motility or impaired motility to full motility. Characterization of the mutant collection showed the following: (i) that there is no strict requirement for any one of the six flagellins to assemble a filament; (ii) that there is a correlation between slower swimming speeds and shorter filament lengths in Delta fljK Delta fljM mutants; (iii) that the flagellins FljM to FljO are less stable than FljJ to FljL; and (iv) that the flagellins FljK, FljL, FljM, FljN, and FljO alone are able to assemble a filament.
引用
收藏
页码:2695 / 2707
页数:13
相关论文
共 45 条
[1]   Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator [J].
Aldridge, P ;
Jenal, U .
MOLECULAR MICROBIOLOGY, 1999, 32 (02) :379-391
[2]   Type III secretion chaperone FlgN regulates flagellar assembly via a negative feedback loop containing its chaperone substrates FlgK and FlgL [J].
Aldridge, P ;
Karlinsey, J ;
Hughes, KT .
MOLECULAR MICROBIOLOGY, 2003, 49 (05) :1333-1345
[3]   Who's talking to whom? Epithelial-bacterial pathogen interactions [J].
Aldridge, PD ;
Gray, MA ;
Hirst, BH ;
Khan, CMA .
MOLECULAR MICROBIOLOGY, 2005, 55 (03) :655-663
[4]   The flagellar-specific transcription factor, σ28, is the Type III secretion chaperone for the flagellar-specific anti-σ28 factor FlgM [J].
Aldridge, Phillip D. ;
Karlinsey, Joyce E. ;
Aldridge, Christine ;
Birchall, Christopher ;
Thompson, Danielle ;
Yagasaki, Jin ;
Hughes, Kelly T. .
GENES & DEVELOPMENT, 2006, 20 (16) :2315-2326
[5]   FlbT, the post-transcriptional regulator of flagellin synthesis in Caulobacter crescentus, interacts with the 5′ untranslated region of flagellin mRNA [J].
Anderson, PE ;
Gober, JW .
MOLECULAR MICROBIOLOGY, 2000, 38 (01) :41-52
[6]   Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism [J].
Bonifield, HR ;
Hughes, KT .
JOURNAL OF BACTERIOLOGY, 2003, 185 (12) :3567-3574
[7]   THE ORGANIZATION OF THE CAULOBACTER-CRESCENTUS FLAGELLAR FILAMENT [J].
DRIKS, A ;
BRYAN, R ;
SHAPIRO, L ;
DEROSIER, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 206 (04) :627-636
[8]   A family of six flagellin genes contributes to the Caulobacter crescentus flagellar filament [J].
Ely, B ;
Ely, TW ;
Crymes, WB ;
Minnich, SA .
JOURNAL OF BACTERIOLOGY, 2000, 182 (17) :5001-5004
[9]   ENVELOPE-ASSOCIATED NUCLEOID FROM CAULOBACTER-CRESCENTUS STALKED AND SWARMER CELLS [J].
EVINGER, M ;
AGABIAN, N .
JOURNAL OF BACTERIOLOGY, 1977, 132 (01) :294-301
[10]  
GOBER JW, 2000, REGULATION FLAGELLUM