Large negative velocity gradients in Burgers turbulence

被引:68
|
作者
Chernykh, AI [1 ]
Stepanov, MG
机构
[1] Russian Acad Sci, Inst Automat & Electrometry, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Weizmann Inst Sci, IL-76100 Rehovot, Israel
关键词
D O I
10.1103/PhysRevE.64.026306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is, the velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of Balkovsky et at. [Phys. Rev. Lett. 78, 1452 (1997)] based on short-time estimations that the left tail of PDF has the form ln P(u(x)) proportional to - \u(x)\(3/2).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence
    Wang, Jianchun
    Shi, Yipeng
    Wang, Lian-Ping
    Xiao, Zuoli
    He, Xiantu
    Chen, Shiyi
    PHYSICS OF FLUIDS, 2011, 23 (12)
  • [22] MODELING OF INHOMOGENEOUS TURBULENCE IN THE ABSENCE OF MEAN VELOCITY-GRADIENTS
    MAGNAUDET, J
    APPLIED SCIENTIFIC RESEARCH, 1993, 51 (1-2): : 525 - 531
  • [24] Multiscale velocity correlations in turbulence and Burgers turbulence: Fusion rules, Markov processes in scale, and multifractal predictions
    Friedrich, Jan
    Margazoglou, Georgios
    Biferale, Luca
    Grauer, Rainer
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [25] Formulating viscous hydrodynamics for large velocity gradients
    Pratt, Scott
    PHYSICAL REVIEW C, 2008, 77 (02):
  • [26] Kicked Burgers turbulence
    Bec, J
    Frisch, U
    Khanin, K
    JOURNAL OF FLUID MECHANICS, 2000, 416 : 239 - 267
  • [27] On the decay of Burgers turbulence
    Gurbatov, SN
    Simdyankin, SI
    Aurell, E
    Frisch, U
    Toth, G
    JOURNAL OF FLUID MECHANICS, 1997, 344 : 339 - 374
  • [28] Intermittency of Burgers' turbulence
    Balkovsky, E
    Falkovich, G
    Kolokolov, I
    Lebedev, V
    PHYSICAL REVIEW LETTERS, 1997, 78 (08) : 1452 - 1455
  • [29] BURGERS TURBULENCE MODELS
    CASE, KM
    CHIU, SC
    PHYSICS OF FLUIDS, 1969, 12 (09) : 1799 - &
  • [30] SELF-PRESERVATION OF LARGE-SCALE STRUCTURES IN BURGERS TURBULENCE
    AURELL, E
    GURBATOV, SN
    WERTGEIM, II
    PHYSICS LETTERS A, 1993, 182 (01) : 109 - 113