Integral inequalities for coordinated Harmonically convex functions

被引:31
作者
Noor, Muhammad Aslam [1 ]
Noor, Khalida Inayat [1 ]
Awan, Muhammad Uzair [1 ]
机构
[1] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
关键词
26A51; 26D15; convex functions; coordinates; Hermite-Hadamard inequality; Harmonically convex; HERMITE-HADAMARD INEQUALITIES;
D O I
10.1080/17476933.2014.976814
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notion of coordinated harmonically convex functions. We derive some new integral inequalities of Hermite-Hadamard type for coordinated Harmonically convex functions. The interested readers are encouraged to find the applications of harmonically convex functions in pure and applied sciences.
引用
收藏
页码:776 / 786
页数:11
相关论文
共 20 条
  • [1] Alomari M., 2008, Int. J. Math. Anal, V2
  • [2] [Anonymous], 2000, RGMIA MONOGRAPHS
  • [3] [Anonymous], 2013, GLOB J MATH ANAL, DOI DOI 10.13140/2.1.2919.7126
  • [4] [Anonymous], FILOMAT IN PRESS
  • [5] Cristescu G., 2002, Non-Connected Convexities and Applications
  • [6] On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane
    Dragomir, SS
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2001, 5 (04): : 775 - 788
  • [7] Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane
    Hwang, Dah-Yan
    Tseng, Kuei-Lin
    Yang, Gou-Sheng
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (01): : 63 - 73
  • [8] Iscan I., HERMITE HADAMARD TYP
  • [9] Three Proofs of the Inequality e < (1+1/n)n+0.5
    Khattri, Sanjay K.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (03) : 273 - 277
  • [10] Noor M.A., 2015, Appl. Math. Inf. Sci, V9, P233, DOI [10.12785/amis/090129, DOI 10.12785/AMIS/090129]