Stability analysis of Runge-Kutta methods for nonlinear systems of pantograph equations

被引:0
作者
Yu, YX [1 ]
Li, SF [1 ]
机构
[1] Xiangtan Univ, Dept Math, Xiangtan 411105, Peoples R China
关键词
nonlinear pantograph equations; Runge-Kutta methods; numerical stability; asymptotic stability;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with numerical stability of nonlinear systems of pantograph equations. Numerical methods based on (k, l)-algebraically stable Runge-Kutta methods are suggested. Global and asymptotic stability conditions for the presented methods are derived.
引用
收藏
页码:351 / 356
页数:6
相关论文
共 17 条
[1]   Asymptotic stability properties of Theta-methods for the pantograph equation [J].
Bellen, A ;
Guglielmi, N ;
Torelli, L .
APPLIED NUMERICAL MATHEMATICS, 1997, 24 (2-3) :279-293
[2]  
BUHMANN M, 1993, MATH COMPUT, V60, P575, DOI 10.1090/S0025-5718-1993-1176707-2
[3]   ON THE DYNAMICS OF A DISCRETIZED NEUTRAL EQUATION [J].
BUHMANN, MD ;
ISERLES, A .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1992, 12 (03) :339-363
[4]  
BUHMANN MD, 1994, ANN NUMER MATH, V1, P133
[5]  
Burrage K., 1980, BIT (Nordisk Tidskrift for Informationsbehandling), V20, P185, DOI 10.1007/BF01933191
[6]   A GENERALIZATION OF ALGEBRAIC STABILITY FOR RUNGE-KUTTA METHODS [J].
COOPER, GJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1984, 4 (04) :427-440
[7]  
FELDSTEIN MA, 1968, P 1968 ACM NAT C, P67
[8]   Stability analysis of Runge-Kutta methods for non-linear delay differential equations [J].
Chengming H. ;
Hongyuan F. ;
Shoufu L. ;
Guangnan C. .
BIT Numerical Mathematics, 1999, 39 (2) :270-280
[9]  
Iserles A., 1993, European J. Appl. Math, V4, P1, DOI [DOI 10.1017/S0956792500000966, DOI 10.1017/S0956792500000966)]
[10]  
Koto T, 1999, NUMER MATH, V84, P233, DOI 10.1007/s002119900101