Deep Learning for Rapid Identification of Microbes Using Metabolomics Profiles

被引:11
作者
Wang, Danhui [1 ,2 ]
Greenwood, Peyton [1 ]
Klein, Matthias S. [1 ]
机构
[1] Ohio State Univ, Dept Food Sci & Technol, Columbus, OH 43210 USA
[2] Univ Massachusetts, Dept Food Sci, Amherst, MA 01003 USA
基金
美国食品与农业研究所;
关键词
artificial neural networks; machine learning; food safety; NMR; pathogens; LISTERIA-MONOCYTOGENES; COLI; 1,2-PROPANEDIOL; METABOLISM; BACTERIA; GLUCOSE; ETHANOL;
D O I
10.3390/metabo11120863
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rapid detection of viable microbes remains a challenge in fields such as microbial food safety. We here present the application of deep learning algorithms to the rapid detection of pathogenic and non-pathogenic microbes using metabolomics data. Microbes were incubated for 4 h in a protein-free defined medium, followed by 1D H-1 nuclear magnetic resonance (NMR) spectroscopy measurements. NMR spectra were analyzed by spectral binning in an untargeted metabolomics approach. We trained multilayer ("deep") artificial neural networks (ANN) on the data and used the resulting models to predict spectra of unknown microbes. ANN predicted unknown microbes in this laboratory setting with an average accuracy of 99.2% when using a simple feature selection method. We also describe learning behavior of the employed ANN and the optimization strategies that worked well with these networks for our datasets. Performance was compared to other current data analysis methods, and ANN consistently scored higher than random forest models and support vector machines, highlighting the potential of deep learning in metabolomics data analysis.
引用
收藏
页数:13
相关论文
共 31 条
  • [1] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [2] Modeling microbial ethanol production by E. coli under aerobic/anaerobic conditions: Applicability to real postmortem cases and to postmortem blood derived microbial cultures
    Boumba, Vassiliki A.
    Kourkoumelis, Nikolaos
    Gousia, Panagiota
    Economou, Vangelis
    Papadopoulou, Chrissanthy
    Vougiouklakis, Theodore
    [J]. FORENSIC SCIENCE INTERNATIONAL, 2013, 232 (1-3) : 191 - 198
  • [3] The Pyruvate-Tricarboxylic Acid Cycle Node A FOCAL POINT OF VIRULENCE CONTROL IN THE ENTERIC PATHOGEN YERSINIA PSEUDOTUBERCULOSIS
    Buecker, Rene
    Heroven, Ann Kathrin
    Becker, Judith
    Dersch, Petra
    Wittmann, Christoph
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (43) : 30114 - 30132
  • [4] A review of Canadian and international food safety systems: Issues and recommendations for the future
    Charlebois, Sylvain
    Juhasz, Mark
    Music, Janet
    Vezeau, Janele
    [J]. COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2021, 20 (05) : 5043 - 5066
  • [5] Functional γ-Aminobutyrate Shunt in Listeria monocytogenes: Role in Acid Tolerance and Succinate Biosynthesis
    Feehily, Conor
    O'Byrne, Conor P.
    Karatzas, Kimon Andreas G.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (01) : 74 - 80
  • [6] VISUAL FEATURE EXTRACTION BY A MULTILAYERED NETWORK OF ANALOG THRESHOLD ELEMENTS
    FUKUSHIMA, K
    [J]. IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, 1969, SSC5 (04): : 322 - +
  • [7] Amino Acid Catabolism in Staphylococcus aureus and the Function of Carbon Catabolite Repression
    Halsey, Cortney R.
    Lei, Shulei
    Wax, Jacqueline K.
    Lehman, Mckenzie K.
    Nuxoll, Austin S.
    Steinke, Laurey
    Sadykov, Marat
    Powers, Robert
    Fey, Paul D.
    [J]. MBIO, 2017, 8 (01):
  • [8] Performance Evaluation of Algorithms for the Classification of Metabolic 1H NMR Fingerprints
    Hochrein, Jochen
    Klein, Matthias S.
    Zacharias, Helena U.
    Li, Juan
    Wijffels, Gene
    Schirra, Horst Joachim
    Spang, Rainer
    Oefner, Peter J.
    Gronwald, Wolfram
    [J]. JOURNAL OF PROTEOME RESEARCH, 2012, 11 (12) : 6242 - 6251
  • [9] Evidence that a Metabolic Microcompartment Contains and Recycles Private Cofactor Pools
    Huseby, Douglas L.
    Roth, John R.
    [J]. JOURNAL OF BACTERIOLOGY, 2013, 195 (12) : 2864 - 2879
  • [10] Detection of Foodborne Pathogens Using Proteomics and Metabolomics-Based Approaches
    Jadhav, Snehal R.
    Shah, Rohan M.
    Karpe, Avinash, V
    Morrison, Paul D.
    Kouremenos, Konstantinos
    Beale, David J.
    Palombo, Enzo A.
    [J]. FRONTIERS IN MICROBIOLOGY, 2018, 9