2D Thin Sheet Heterostructures of MoS2 on MoSe2 as Efficient Electrocatalyst for Hydrogen Evolution Reaction in Wide pH Range

被引:59
作者
Sharma, Mamta Devi [1 ]
Mahala, Chavi [1 ]
Basu, Mrinmoyee [1 ]
机构
[1] BITS Pilani, Dept Chem, Pilani Campus, Pilani 333031, Rajasthan, India
关键词
WATER; NANOSHEETS; CATALYST; OPTOELECTRONICS; FILMS; EDGES; C3N4;
D O I
10.1021/acs.inorgchem.9b03445
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Two-dimensional layered transition metal dichalcogenides, MoSe(2 )and MoS2, have drawn potential attention in the field of water splitting. Coupling of MoS2 and MoSe2 provides a sustainable route to improve the electrocatalytic activity for the hydrogen evolution reaction (HER). Here, the heterostructures of thin sheets (ts) of MoSe2 and MoS2 are combined to develop the MoSe2-ts@MoS2-ts heterostructure via multiple-step methodology. First, thin sheets of MoSe2 are synthesized following the stepwise hydrothermal method. After the successful synthesis of MoSe2-ts, MoS2-ts is synthesized on it to develop the heterostructure: MoSe2-ts@MoS2-ts. By tuning the amount of MoS2-ts and MoSe2-ts in the heterostructure separately, the optimum condition is obtained for HER. The unique heterostructure is efficient for HER under wide pH conditions like 1 M KOH, pH-7 phosphate buffer, 3.5% saline water, and finally 0.5 M H2SO4. MoSe2-ts@MoS2-ts can generate 10 mA/cm(2) current density under the application of -0.186 V vs RHE with a low( )Tafel value of 71 mV/decade. The formation of the heterojunction plays an essential role in facilitating charge transportation. Furthermore, the heterostructure provides the more active sites for the adsorption of hydrogen to generate H-2. An excess amount of any of the bare counter parts in the heterostructure leads to a decrease in electrocatalytic efficiency because of the lowered heterojuction formation. MoSe2-ts@MoS2-ts has very high stability during the electrocatalytic reaction, which is determined from 1000 consecutive cycles and a 24 h prolonged scan. MoSe2-ts@MoS2-ts can generate 147 mu mol of H-2 in similar to 50 min of reaction time with 100% Faradaic efficiency.
引用
收藏
页码:4377 / 4388
页数:12
相关论文
共 63 条
  • [11] Cobalt incorporated MoS2 hollow structure with rich out-of-plane edges for efficient hydrogen production
    Chen, Guo
    Dong, Wen Fei
    Li, Bang Lin
    Deng, Yang Hui
    Wang, Xiao Hu
    Zhang, Xiao Fang
    Luo, Hong Qun
    Li, Nian Bing
    [J]. ELECTROCHIMICA ACTA, 2018, 276 : 81 - 91
  • [12] Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications
    Chen, Jing
    Pan, Anqiang
    Wang, Yaping
    Cao, Xinxin
    Zhang, Wenchao
    Kong, Xiangzhong
    Su, Qiong
    Lin, Jiande
    Cao, Guozhong
    Liang, Shuquan
    [J]. ENERGY STORAGE MATERIALS, 2019, 21 : 97 - 106
  • [13] Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
  • [14] Boron nitride substrates for high-quality graphene electronics
    Dean, C. R.
    Young, A. F.
    Meric, I.
    Lee, C.
    Wang, L.
    Sorgenfrei, S.
    Watanabe, K.
    Taniguchi, T.
    Kim, P.
    Shepard, K. L.
    Hone, J.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 722 - 726
  • [15] Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds
    Ding, Qi
    Song, Bo
    Xu, Ping
    Jin, Song
    [J]. CHEM, 2016, 1 (05): : 699 - 726
  • [16] Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction
    Fageria, Pragati
    Sudharshan, K. Y.
    Nazir, Roshan
    Basu, Mrinmoyee
    Pande, Surojit
    [J]. ELECTROCHIMICA ACTA, 2017, 258 : 1273 - 1283
  • [17] ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE
    FUJISHIMA, A
    HONDA, K
    [J]. NATURE, 1972, 238 (5358) : 37 - +
  • [18] Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production
    Gao, Min-Rui
    Chan, Maria K. Y.
    Sun, Yugang
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [19] Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst
    Gao, Minrui
    Sheng, Wenchao
    Zhuang, Zhongbin
    Fang, Qianrong
    Gu, Shuang
    Jiang, Jun
    Yan, Yushan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) : 7077 - 7084
  • [20] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191