Performance evaluation of a two-directional energy harvester with low-frequency vibration

被引:8
作者
Ding, Wenjun [1 ,2 ]
Mao, Zhaoyong [3 ]
Cao, Hui [1 ,2 ]
Wang, Keyan [4 ]
机构
[1] State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Elect Engn, Xian 710049, Peoples R China
[3] Northwestern Polytech Univ, Xian 710072, Peoples R China
[4] Shaanxi Fast Gear Co Ltd, Xian 710119, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
inertial pendulum energy harvester; two-directional energy harvesting; underwater mooring platform; CYLINDER; FLOW; DESIGN;
D O I
10.1088/1361-665X/ab7944
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This study evaluates the power harnessing performance of a two-directional inertial pendulum energy harvester for miniature underwater mooring platforms (UMPs). This novel harvester can achieve a dominant rotational motion under different parametrical excitations. The two-directional energy harvesting performance is investigated through vibration platform experiments over roll-pitch coupling excitations. The frequency ratio between the pitch and roll motion is about 2 to 1, the roll excitation frequency is over the range of 0.2-0.3 Hz, and the pitch amplitude is much lower than the roll amplitude. Experimental results indicate that the inclination configuration of the harvester can improve two-directional energy harvesting performance significantly with low-frequency vibration. Geometrical tunability through adjusting inclination configuration for the harvester can enhance the two-directional energy harvesting apparently. Four prominent phenomena of the two-directional energy harvesting performance are observed with the increasing load resistance. The motion state transformation of the inertial pendulum can result in dramatical jumps or drops in two-directional energy harvesting.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Electromagnetic energy harvester for harvesting energy from low-frequency vibration
    Zhang, K.
    Su, Y.
    Ding, J.
    Zhang, Z.
    2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [2] Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments
    Cao, Dongxing
    Gao, Yanhui
    Hu, Wenhua
    ACTA MECHANICA SINICA, 2019, 35 (04) : 894 - 911
  • [3] Multimode auxetic piezoelectric energy harvester for low-frequency vibration
    He, Longfei
    Kurita, Hiroki
    Narita, Fumio
    SMART MATERIALS AND STRUCTURES, 2024, 33 (03)
  • [4] A nonlinear electromagnetic vibration energy harvester lubricated by magnetic fluid for low-frequency vibration
    Yu, Jun
    Yao, Jie
    Li, Decai
    Yu, Jianping
    Xiao, Huiyun
    Zhang, Haifeng
    Shang, Jie
    Wu, Yuanzhao
    Liu, Yiwei
    Li, Run-Wei
    APPLIED PHYSICS LETTERS, 2023, 123 (04)
  • [5] Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure
    Li, Pengwei
    Liu, Ying
    Wang, Yanfen
    Luo, Cuixian
    Li, Gang
    Hu, Jie
    Liu, Wei
    Zhang, Wendong
    AIP ADVANCES, 2015, 5 (04)
  • [6] Linear multi-degree-of-freedom low-frequency piezoelectric vibration energy harvester
    Wang, Yanfen
    Luo, Cuixian
    Li, Pengwei
    FERROELECTRICS, 2016, 502 (01) : 57 - 68
  • [7] A low-frequency multidirectional piezoelectric vibration energy harvester using a universal joint structure
    Kan, Junwu
    Wu, Silei
    Lin, Yazhi
    Kuang, Zhenli
    Wu, Wenchao
    Cao, Zhenxin
    Zhang, Zhonghua
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2024, 35 (17) : 1335 - 1346
  • [8] An omnidirectional low-frequency wave vibration energy harvester with complementary advantages of pendulum and gyroscope structures
    Shi, Ge
    Sun, Qichao
    Xia, Yinshui
    Jia, Shengyao
    Pan, Jiaheng
    Li, Qing
    Wang, Xiudeng
    Xia, Huakang
    Wang, Binrui
    Sun, Yanwei
    ENERGY, 2024, 305
  • [9] Analysis of multi-direction low-frequency vibration energy harvester using diamagnetic levitation
    Ye, Zhitong
    Duan, Zhiyong
    Su, Liushuai
    Takahata, Kenichi
    Su, Yufeng
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2015, 47 (03) : 847 - 860
  • [10] Fabrication and characterization of non-resonant magneto mechanical low-frequency vibration energy harvester
    Nammari, Abdullah
    Caskey, Logan
    Negrete, Johnny
    Bardaweel, Hamzeh
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 102 : 298 - 311