Complementing Cancer Photodynamic Therapy with Ferroptosis through Iron Oxide Loaded Porphyrin-Grafted Lipid Nanoparticles

被引:115
作者
Liang, Xiaolong [1 ]
Chen, Min [2 ,3 ]
Bhattarai, Pravin [2 ,4 ]
Hameed, Sadaf [2 ,5 ]
Tang, Yida [6 ,7 ]
Dai, Zhifei [2 ]
机构
[1] Peking Univ Third Hosp, Dept Ultrasound, Beijing 100191, Peoples R China
[2] Peking Univ, Coll Future Technol, Natl Biomed Imaging Ctr, Dept Biomed Engn, Beijing 100871, Peoples R China
[3] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[4] Phutung Res Inst, Dept Biophoton, Kathmandu 12335, Nepal
[5] Univ Cent Punjab, Fac Life Sci, Lahore 54000, Pakistan
[6] Dept Cardiol, Beijing 100191, Peoples R China
[7] Peking Univ Third Hosp, Key Lab Mol Cardiovasc Sci, Minist Educ, Inst Vasc Med, Beijing 100191, Peoples R China
基金
国家自然科学基金国际合作与交流项目; 中国国家自然科学基金;
关键词
ferroptosis; photodynamic therapy; macrophages; iron oxide; porphyrin; STIMULI-RESPONSIVE NANOPARTICLES; PROSTATE-CANCER; DELIVERY; CELLS;
D O I
10.1021/acsnano.1c08108
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanomaterials that combine multimodality imaging and therapeutic functions within a single nanoplatform have drawn extensive attention for molecular medicines and biological applications. Herein, we report a theranostic nanoplatform based on a relatively smaller (<20 nm) iron oxide loaded porphyrin-grafted lipid nanoparticles (Fe3O4@PGL NPs). The amphiphilic PGL easily self-assembled on the hydrophobic exterior surface of ultrasmall Fe3O4 NPs, resulting in a final ultrasmall Fe3O4@PGL NPs with diameter of similar to 10 nm. The excellent self-assembling nature of the as-synthesized PGL NPs facilitated a higher loading of porphyrins, showed a negligible dark toxicity, and demonstrated an excellent photodynamic effect against HT-29 cancer cells in vitro. The in vivo experimental results further confirmed that Fe3O4@PGL NPs were ideally qualified for both the fluorescence and magnetic resonance (MR) imaging guided nanoplatforms to track the biodistribution and therapeutic responses of NPs as well as to simultaneously trigger the generation of highly cytotoxic reactive oxygen species (ROS) necessary for excellent photodynamic therapy (PDT). After recording convincing therapeutic responses, we further evaluated the ability of Fe3O4@PGL NPs/Fe3O4@Lipid NPs for ferroptosis therapy (FT) via tumor microenvironment (TME) modulation for improved anticancer activity. We hypothesized that tumor-associated macrophages (TAMs) could significantly improve the efficacy of FT by accelerating the Fenton reaction in vitro. In our results, the Fe ions released in vitro directly contributed to the Fenton reaction, whereas the presence of RAW 264.7 macrophages further accelerated the ROS generation as observed by the fluorescence imaging. The significant increase in the ROS during the coincubation of NPs, endocytosed by HT-29 cells and RAW264.7 cells, further induced increased cellular toxicity of cancer cells.
引用
收藏
页码:20164 / 20180
页数:17
相关论文
共 50 条
[1]   Rational Design of Multi-Stimuli-Responsive Nanoparticles for Precise Cancer Therapy [J].
An, Xiaonan ;
Zhu, Aijun ;
Luo, Huanhuan ;
Ke, Hengte ;
Chen, Huabing ;
Zhao, Youliang .
ACS NANO, 2016, 10 (06) :5947-5958
[2]   Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages [J].
Arlauckas, Sean P. ;
Garren, Seth B. ;
Garris, Chris S. ;
Kohler, Rainer H. ;
Oh, Juhyun ;
Pittet, Mikael J. ;
Weissleder, Ralph .
THERANOSTICS, 2018, 8 (21) :5842-5854
[3]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[4]   Preparation and Characterization of the Magnetic Fluid of Trimethoxyhexadecylsilane-Coated Fe3O4 Nanoparticles [J].
Cha, Hyun Gil ;
Kim, Chang Woo ;
Kang, Shin Woo ;
Kim, Byung Kyu ;
Kang, Young Soo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (21) :9802-9807
[5]   Ultrasound Triggered Conversion of Porphyrin/Camptothecin-Fluoroxyuridine Triad Microbubbles into Nanoparticles Overcomes Multidrug Resistance in Colorectal Cancer [J].
Chen, Min ;
Liang, Xiaolong ;
Gao, Chuang ;
Zhao, Ranran ;
Zhang, Nisi ;
Wang, Shumin ;
Chen, Wen ;
Zhao, Bo ;
Wang, Jinrui ;
Dai, Zhifei .
ACS NANO, 2018, 12 (07) :7312-7326
[6]  
Dai TH, 2012, FRONT MICROBIOL, V3, DOI [10.3389/fmicb.2012.00120, 10.3389/fmicb.2012.00417]
[7]   Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death [J].
Dixon, Scott J. ;
Lemberg, Kathryn M. ;
Lamprecht, Michael R. ;
Skouta, Rachid ;
Zaitsev, Eleina M. ;
Gleason, Caroline E. ;
Patel, Darpan N. ;
Bauer, Andras J. ;
Cantley, Alexandra M. ;
Yang, Wan Seok ;
Morrison, Barclay, III ;
Stockwell, Brent R. .
CELL, 2012, 149 (05) :1060-1072
[8]   Stimuli-responsive nanoparticles for targeting the tumor microenvironment [J].
Du, Jinzhi ;
Lane, Lucas A. ;
Nie, Shuming .
JOURNAL OF CONTROLLED RELEASE, 2015, 219 :205-214
[9]   Matrix metalloproteinase-2-targeted superparamagnetic Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes for dual-mode imaging and photodynamic therapy [J].
Duan, Meng ;
Xia, Fangfang ;
Li, Tianliang ;
Shapter, Joseph G. ;
Yang, Sheng ;
Li, Yongying ;
Gao, Guo ;
Cui, Daxiang .
NANOSCALE, 2019, 11 (39) :18426-18435
[10]   Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment [J].
Espinosa, Ana ;
Di Corato, Riccardo ;
Kolosnjaj-Tabi, Jelena ;
Flaud, Patrice ;
Pellegrino, Teresa ;
Wilhelm, Claire .
ACS NANO, 2016, 10 (02) :2436-2446