Extremal problems in de Branges spaces: the case of truncated and odd functions

被引:4
作者
Carneiro, Emanuel [1 ]
Goncalves, Felipe [1 ]
机构
[1] IMPA Inst Nacl Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Extremal functions; De Branges spaces; Exponential type; Laplace transform; Reproducing kernel; Trigonometric polynomials; Majorants; ENTIRE APPROXIMATIONS; ZEROS;
D O I
10.1007/s00209-015-1411-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we find extremal one-sided approximations of exponential type for a class of truncated and odd functions with a certain exponential subordination. These approximations optimize the -error, where is an arbitrary Hermite-Biehler entire function of bounded type in the upper half-plane. This extends the work of Holt and Vaaler (Duke Math J 83:203-247, 1996) for the signum function. We also provide periodic analogues of these results, finding optimal one-sided approximations by trigonometric polynomials of a given degree to a class of periodic functions with exponential subordination. These extremal trigonometric polynomials optimize the -error, where is an arbitrary nontrivial measure on . The periodic results extend the work of Li and Vaaler (Indiana Univ Math J 48(1):183-236, 1999), who considered this problem for the sawtooth function with respect to Jacobi measures. Our techniques are based on the theory of reproducing kernel Hilbert spaces (of entire functions and of polynomials) and on the construction of suitable interpolations with nodes at the zeros of Laguerre-Plya functions.
引用
收藏
页码:17 / 45
页数:29
相关论文
共 36 条
  • [1] Bojanic R., 1966, ENSEIGN MATH, V2, P139
  • [2] Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function
    Carneiro, Emanuel
    Chandee, Vorrapan
    Littmann, Friedrich
    Milinovich, Micah B.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 725 : 143 - 182
  • [3] Extremal functions in de Branges and Euclidean spaces
    Carneiro, Emanuel
    Littmann, Friedrich
    [J]. ADVANCES IN MATHEMATICS, 2014, 260 : 281 - 349
  • [4] Entire Approximations for a Class of Truncated and Odd Functions
    Carneiro, Emanuel
    Littmann, Friedrich
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (05) : 967 - 996
  • [5] Bandlimited Approximations to the Truncated Gaussian and Applications
    Carneiro, Emanuel
    Littmann, Friedrich
    [J]. CONSTRUCTIVE APPROXIMATION, 2013, 38 (01) : 19 - 57
  • [6] Carneiro E, 2013, MATH ANN, V356, P939, DOI 10.1007/s00208-012-0876-z
  • [7] GAUSSIAN SUBORDINATION FOR THE BEURLING-SELBERG EXTREMAL PROBLEM
    Carneiro, Emanuel
    Littmann, Friedrich
    Vaaler, Jeffrey D.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (07) : 3493 - 3534
  • [8] SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS. II
    Carneiro, Emanuel
    Vaaler, Jeffrey D.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (11) : 5803 - 5843
  • [9] Bounding ζ (s) in the critical strip
    Carneiro, Emanuel
    Chandee, Vorrapan
    [J]. JOURNAL OF NUMBER THEORY, 2011, 131 (03) : 363 - 384
  • [10] Some Extremal Functions in Fourier Analysis, III
    Carneiro, Emanuel
    Vaaler, Jeffrey D.
    [J]. CONSTRUCTIVE APPROXIMATION, 2010, 31 (02) : 259 - 288