Effect of tempering temperature on the microstructure and mechanical properties in mooring chain steel

被引:48
作者
Cheng, X. Y. [1 ,2 ]
Zhang, H. X. [2 ]
Li, H. [2 ]
Shen, H. P. [2 ]
机构
[1] Shanghai Univ, Lab Microstruct, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2015年 / 636卷
基金
中国国家自然科学基金;
关键词
Tensile property; Strain-hardening exponent; Hydrogen-induced embrittlement; EBSD; Mooring chain steel; STRESS-CORROSION CRACKING; HYDROGEN EMBRITTLEMENT; STRENGTH; PRECIPITATION; BEHAVIOR; METALS;
D O I
10.1016/j.msea.2015.03.102
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The tensile behavior of a mooring chain steel was investigated after tempering at 560 degrees C, 600 degrees C, 640 degrees C temperatures. With increasing tempering temperature, the steel displayed not only a decrease in strength, but also a slight increase in strain-hardening ability between the proof and ultimate stress. In the meantime, an upper yield point appeared at 640 degrees C tempered samples. The susceptibility to hydrogen-induced embrittlement reduced on the same precharging hydrogen condition as tempering temperature elevated. These changes of tensile behavior were elucidated from their microstructure variation observed by transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 171
页数:8
相关论文
共 24 条
[1]   A fracture criterion for the notch strength of high strength steels in the presence of hydrogen [J].
Ayas, C. ;
Deshpande, V. S. ;
Fleck, N. A. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 63 :80-93
[2]   Hydrogen embrittlement behavior of HSLA line pipe steel under cathodic protection [J].
Cabrini, Marina ;
Lorenzi, Sergio ;
Marcassoli, Paolo ;
Pastore, Tommaso .
CORROSION REVIEWS, 2011, 29 (5-6) :261-274
[3]   The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking [J].
Carneiro, RA ;
Ratnapuli, RC ;
Lins, VD .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 357 (1-2) :104-110
[4]   THERMAL-ANALYSIS OF TRAPPED HYDROGEN IN PURE IRON [J].
CHOO, WY ;
LEE, JY .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1982, 13 (01) :135-140
[5]   Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel [J].
Escobar, D. Perez ;
Depover, T. ;
Duprez, L. ;
Verbeken, K. ;
Verhaege, M. .
ACTA MATERIALIA, 2012, 60 (6-7) :2593-2605
[6]  
Fan Jian-wen, 2003, MET SCI HEAT TREAT, V28, P5
[7]   Mechanical and Electrochemical Behavior of a High Strength Low Alloy Steel of Different Grain Sizes [J].
Ghosh, K. S. ;
Mondal, D. K. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (08) :3608-3622
[8]   Precipitation hardening in metals [J].
Gladman, T .
MATERIALS SCIENCE AND TECHNOLOGY, 1999, 15 (01) :30-36
[9]  
Halfa H., 2014, JMMCE, V02, P428, DOI [DOI 10.4236/JMMCE.2014.25047, 10.4236/jmmce.2014.25047]
[10]   Taylor hardening in five-power-law creep of metals and Class M alloys [J].
Kassner, ME .
ACTA MATERIALIA, 2004, 52 (01) :1-9