Mechanically Robust Flexible Multilayer Aramid Nanofibers and MXene Film for High-Performance Electromagnetic Interference Shielding and Thermal Insulation

被引:13
作者
Zhou, Jun [1 ,2 ]
Yu, Junsheng [1 ]
Bai, Dongyu [2 ,3 ]
Liu, Huili [3 ,4 ]
Li, Lu [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Sch Optoelect Sci & Engn, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
[2] Chongqing Univ Arts & Sci, Sch Mat Sci & Engn, Chongqing Key Lab Mat Surface & Interface Sci, Chongqing 402160, Peoples R China
[3] Chongqing Univ, Sch Chem & Chem Engn, Chongqing 400044, Peoples R China
[4] Chongqing Univ Arts & Sci, Coll Chem & Environm Engn, Chongqing Key Lab Environm Mat & Remediat Technol, Chongqing 402160, Peoples R China
基金
中国国家自然科学基金;
关键词
multilayer structure; MXene; ANF; electromagnetic interference shielding; thermal insulation; LIGHTWEIGHT; ABSORPTION; FOAMS; FIBER;
D O I
10.3390/nano11113041
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In order to overcome the various defects caused by the limitations of solid metal as a shielding material, the development of electromagnetic shielding materials with flexibility and excellent mechanical properties is of great significance for the next generation of intelligent electronic devices. Here, the aramid nanofiber/Ti3C2Tx MXene (ANF/MXene) composite films with multilayer structure were successfully prepared through a simple alternate vacuum-assisted filtration (AVAF) process. With the intervention of the ANF layer, the multilayer-structure film exhibits excellent mechanical properties. The ANF2/MXene1 composite film exhibits a tensile strength of 177.7 MPa and a breaking strain of 12.6%. In addition, the ANF5/MXene4 composite film with a thickness of only 30 mu m exhibits an electromagnetic interference (EMI) shielding efficiency of 37.5 dB and a high EMI-specific shielding effectiveness value accounting for thickness (SSE/t) of 4718 dB & BULL;cm(2) g(-1). Moreover, the composite film was excellent in heat-insulation performance and in avoiding light-to-heat conversion. No burning sensation was produced on the surface of the film with a thickness of only 100 mu m at a high temperature of 130 & DEG;C. Furthermore, the surface of the film was only mild when touched under simulated sunlight. Therefore, our multilayer-structure film has potential significance in practical applications such as next-generation smart electronic equipment, communications, and military applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Robust superhydrophobic and porous melamine-formaldehyde based composites for high-performance electromagnetic interference shielding
    Li, Chenjian
    Zhang, Huaqing
    Song, Yiheng
    Cai, Lixin
    Wu, Jima
    Wu, Jinxing
    Wang, Shan
    Xiong, Chuanxi
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 624
  • [42] A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding
    Kumar, Pradip
    Shahzad, Faisal
    Hong, Soon Man
    Koo, Chong Min
    RSC ADVANCES, 2016, 6 (103): : 101283 - 101287
  • [43] Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding
    Yang, Wang
    Bai, Hengxuan
    Jiang, Bo
    Wang, Chaonan
    Ye, Weimin
    Li, Zhengxuan
    Xu, Chong
    Wang, Xiaobai
    Li, Yongfeng
    NANO RESEARCH, 2022, 15 (11) : 9926 - 9935
  • [44] MXene-decorated carbonized jute composite for high-performance electromagnetic interference shielding
    Sun, Yanli
    Li, Bo
    Zheng, Huafu
    Rong, Kai
    Fan, Wei
    Li, Danyang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 22 : 658 - 667
  • [45] Robust and self-healing polydimethylsiloxane/carbon nanotube foams for electromagnetic interference shielding and thermal insulation
    Xie, Zhaoxin
    Cai, Yifan
    Wei, Zijian
    Zhan, Yanhu
    Meng, Yanyan
    Li, Yuchao
    Li, Yankai
    Xie, Qian
    Xia, Hesheng
    COMPOSITES COMMUNICATIONS, 2022, 35
  • [46] Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding
    Weng, Chuanxin
    Wang, Guorui
    Dai, Zhaohe
    Pei, Yongmao
    Liu, Luqi
    Zhang, Zhong
    NANOSCALE, 2019, 11 (47) : 22804 - 22812
  • [47] Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding
    Yue Liu
    Yadi Wang
    Na Wu
    Mingrui Han
    Wei Liu
    Jiurong Liu
    Zhihui Zeng
    Nano-Micro Letters, 2023, 15
  • [48] Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding
    Liu, Fang
    Li, Yuchao
    Hao, Shuai
    Cheng, Yu
    Zhan, Yanhu
    Zhang, Chunmei
    Meng, Yanyan
    Xie, Qian
    Xia, Hesheng
    CARBOHYDRATE POLYMERS, 2020, 243
  • [49] Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding
    Wu, Xinyu
    Han, Bingyong
    Zhang, Hao-Bin
    Xie, Xi
    Tu, Tingxiang
    Zhang, Yu
    Dai, Yang
    Yang, Rui
    Yu, Zhong-Zhen
    CHEMICAL ENGINEERING JOURNAL, 2020, 381
  • [50] Self-assembling, flexible and stable aramid nanofiber/polypyrrole/MXene composite film for efficient electromagnetic interference shielding, dual-driven heating and infrared thermal camouflage
    Cheng, Ming-hua
    Xu, Xiang
    Zhang, Hao-wen
    Kong, Si-yu
    Feng, Zhe-sheng
    Meng, Fanbin
    Wang, Yan
    CHEMICAL ENGINEERING JOURNAL, 2025, 505