Genetically determined variable structure multiple model estimation

被引:26
作者
Katsikas, SK [1 ]
Likothanassis, SD
Beligiannis, GN
Berketis, KG
Fotakis, DA
机构
[1] Univ Aegean, Dept Informat & Commun Syst, Karlovassi, Greece
[2] Univ Patras, Dept Comp Engn & Informat, Patras, Greece
[3] Univ Patras, UPAIRC, Artificial Intelligence Res Ctr, Patras, Greece
[4] Comp Technol Inst, GR-26110 Patras, Greece
[5] Univ Aegean, Dept Math, Karlovassi, Greece
关键词
genetic algorithms; Kalman filtering; multiple model estimation; variable structure estimation;
D O I
10.1109/78.950781
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the multimodel partitioning theory is combined with genetic algorithms to produce a new generation of multimodel partitioning filters, whose structure varies to conform to a model set being determined dynamically and on-line by using a suitably designed genetic algorithm. The proposed algorithm does not require any knowledge of the model switching law, is practically implementable, and exhibits superior performance compared with a fixed-structure MMPF, as indicated by simulation experiments.
引用
收藏
页码:2253 / 2261
页数:9
相关论文
共 36 条
[1]  
Anderson B., 1979, OPTIMAL FILTERING
[2]  
Anderson BDO, 2000, INT J ROBUST NONLIN, V10, P909, DOI 10.1002/1099-1239(200009/10)10:11/12<909::AID-RNC532>3.0.CO
[3]  
2-Z
[4]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[5]  
[Anonymous], ADAPTIVE ESTIMATION
[6]  
BELIGIANNIS G, 1999, P 5 INT C INF SYST A, V6, P469
[7]  
BELIGIANNIS GN, 1998, SIGNAL PROCESS, V11, P2149
[8]   Multimodel partitioning filters and genetic algorithms [J].
Berketis, KG ;
Katsikas, SK ;
Likothanassis, SD .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (04) :2421-2427
[9]  
BERKETIS KG, 1997, P INT C DIG SIGN PRO
[10]  
Efe M, 1996, IEEE DECIS CONTR P, P3151, DOI 10.1109/CDC.1996.573613