Stochastic flows of SDEs with non-Lipschitz coefficients and singular time

被引:0
作者
Xu, Jie [1 ,2 ]
Wen, Jiaping [1 ,2 ]
Mu, Jianyong [1 ,2 ]
Liu, Jicheng [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
Stochastic homeomorphism flows; SDEs; Non-Lipschitz; Singular time; Zvonkin's transformation; DIFFERENTIAL-EQUATIONS; HOMEOMORPHISM FLOWS;
D O I
10.1016/j.spl.2019.01.026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we prove the stochastic homeomorphism flows for stochastic differential equations (SDEs) with non-Lipschitz coefficients and singular time. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:118 / 127
页数:10
相关论文
共 17 条
[1]  
[Anonymous], 1998, RANDOM DYNAMICAL SYS, DOI DOI 10.1007/978-3-662-12878-7
[2]   Flow of homeomorphisms and stochastic transport equations [J].
Fang, Shizan ;
Luo, Dejun .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (05) :1079-1108
[3]   A study of a class of stochastic differential equations with non-Lipschitzian coefficients [J].
Fang, SZ ;
Zhang, TS .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (03) :356-390
[4]  
Kunita H., 1984, LECT NOTES MATH, P143, DOI DOI 10.1007/BFB0099433
[5]   New sufficient conditions of existence, moment estimations and non confluence for SDEs with non-Lipschitzian coefficients [J].
Lan, Guangqiang ;
Wu, Jiang-Lun .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (12) :4030-4049
[6]   Homeomorphic property of solutions of SDE driven by countably many Brownian motions with non-Lipschitzian coefficients [J].
Liang, ZX .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (06) :523-538
[7]  
Qiao HJ, 2014, OSAKA J MATH, V51, P47
[8]   Homeomorphism flows for non-Lipschitz stochastic differential equations with jumps [J].
Qiao, Huijie ;
Zhang, Xicheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (12) :2254-2268
[9]   Stochastic flows for SDEs with non-Lipschitz coefficients [J].
Ren, JG ;
Zhang, XX .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (08) :739-754
[10]  
Revuz D., 1999, CONTINUOUS MARTINGAL