A remark on the Schrodinger propagator on Wiener amalgam spaces

被引:1
作者
Kato, Tomoya [1 ]
Tomita, Naohito [1 ]
机构
[1] Osaka Univ, Dept Math, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
基金
日本学术振兴会;
关键词
modulation spaces; Schrodinger propagator; Wiener amalgam spaces; UNIMODULAR FOURIER MULTIPLIERS; MODULATION SPACES; OPERATORS;
D O I
10.1002/mana.201700445
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundedness of the Schrodinger propagator ei Delta on Wiener amalgam spaces. In particular, we determine the necessary and sufficient conditions for the propagator ei Delta to be bounded from Wp,qs to Wp,q0.
引用
收藏
页码:350 / 357
页数:8
相关论文
共 17 条
[1]   Unimodular Fourier multipliers for modulation spaces [J].
Benyi, Arpad ;
Groechenig, Karlheinz ;
Okoudjou, Kasso A. ;
Rogers, Luke G. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 246 (02) :366-384
[2]   Boundedness of Schrodinger Type Propagators on Modulation Spaces [J].
Cordero, Elena ;
Nicola, Fabio .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (03) :311-339
[3]   Unimodular Fourier multipliers on Wiener amalgam spaces [J].
Cunanan, Jayson ;
Sugimoto, Mitsuru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) :738-747
[4]  
Feichtinger H. G., 2006, Sampling Theory in Signal and Image Processing, V5, P109
[5]  
Feichtinger H. G., 1983, Functions, series, operators, V35, P509
[6]  
FEICHTINGER H. G., 2003, Wavelets and their applications, P99
[7]   Modulation spaces and pseudodifferential operators [J].
Gröchenig, K ;
Heil, C .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 34 (04) :439-457
[8]  
Grochenig K., 2001, Foundations of Time-Frequency Analysis, DOI DOI 10.1007/978-1-4612-0003-1
[9]  
Guo W., 2018, ARXIV180700540
[10]   ESTIMATES FOR TRANSLATION INVARIANT OPERATORS IN LP SPACES [J].
HORMANDER, L .
ACTA MATHEMATICA, 1960, 104 (1-2) :93-140