The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo

被引:77
作者
Fekete, CA
Applefield, DJ
Blakely, SA
Shirokikh, N
Pestova, T
Lorsch, JR
Hinnebusch, AG
机构
[1] NICHHD, Lab Gene Regulat & Dev, NIH, Bethesda, MD 20892 USA
[2] Johns Hopkins Univ, Sch Med, Dept Biophys & Biophys Chem, Baltimore, MD 21205 USA
[3] SUNY Hlth Sci Ctr, Dept Microbiol & Immunol, Brooklyn, NY 11203 USA
关键词
eIF1A; eIF2; GCN4; scanning; translation;
D O I
10.1038/sj.emboj.7600821
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translation initiation factor 1A stimulates 40S-binding of the eukaryotic initiation factor 2 (eIF2)/GTP/Met-tRNA(i)(Met) ternary complex (TC) and promotes scanning in vitro. eIF1A contains an OB-fold present in bacterial IF1 plus N- and C-terminal extensions. Truncating the C-terminus (DC) or mutating OB-fold residues (66-70) of eIF1A reduced general translation in vivo but increased GCN4 translation (Gcd(-) phenotype) in a manner suppressed by overexpressing TC. Consistent with this, both mutations diminished 40S-bound TC, eIF5 and eIF3 in vivo, and DC impaired TC recruitment in vitro. The assembly defects of the OB-fold mutation can be attributed to reduced 40S-binding of eIF1A, whereas DC impairs eIF1A function on the ribosome. A substitution in the C-terminal helix (98-101) also reduced 43S assembly in vivo. Rather than producing a Gcd(-) phenotype, however, 98-101 impairs GCN4 derepression in a manner consistent with defective scanning by reinitiating ribosomes. Indeed, 98-101 allows formation of aberrant 48S complexes in vitro and increases utilization of non-AUG codons in vivo. Thus, the OB-fold is crucial for ribosome-binding and the C-terminal domain of eIF1A has eukaryotic-specific functions in TC recruitment and scanning.
引用
收藏
页码:3588 / 3601
页数:14
相关论文
共 45 条
[1]   SUPPRESSION OF RIBOSOMAL REINITIATION AT UPSTREAM OPEN READING FRAMES IN AMINO ACID-STARVED CELLS FORMS THE BASIS FOR GCN4 TRANSLATIONAL CONTROL [J].
ABASTADO, JP ;
MILLER, PF ;
JACKSON, BM ;
HINNEBUSCH, AG .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (01) :486-496
[2]   Development and characterization of a reconstituted yeast translation initiation system [J].
Algire, MA ;
Maag, D ;
Savio, P ;
Acker, MG ;
Tarun, SZ ;
Sachs, AB ;
Asano, K ;
Nielsen, KH ;
Olsen, DS ;
Phan, L ;
Hinnebusch, AG ;
Lorsch, JR .
RNA, 2002, 8 (03) :382-397
[3]  
[Anonymous], ENCY FOOD MICROBIOLO
[4]   A multifactor complex of eukaryotic initiation factors, eIE1, eIF2, eIF3, eIF5, and initiator tRNAMet is an important translation initiation intermediate in vivo [J].
Asano, K ;
Clayton, J ;
Shalev, A ;
Hinnebusch, AG .
GENES & DEVELOPMENT, 2000, 14 (19) :2534-2546
[5]   Conserved bipartite motifs in yeast eIF5 and eIF2Bε, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2 [J].
Asano, K ;
Krishnamoorthy, T ;
Phan, L ;
Pavitt, GD ;
Hinnebusch, AG .
EMBO JOURNAL, 1999, 18 (06) :1673-1688
[6]   Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation [J].
Asano, K ;
Shalev, A ;
Phan, L ;
Nielsen, K ;
Clayton, J ;
Valásek, L ;
Donahue, TF ;
Hinnebusch, AG .
EMBO JOURNAL, 2001, 20 (09) :2326-2337
[7]   Crystal structure of an initiation factor bound to the 30S ribosomal subunit [J].
Carter, AP ;
Clemons, WM ;
Brodersen, DE ;
Morgan-Warren, RJ ;
Hartsch, T ;
Wimberly, BT ;
Ramakrishnan, V .
SCIENCE, 2001, 291 (5503) :498-501
[8]   Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2 [J].
Choi, SK ;
Olsen, DS ;
Roll-Mecak, A ;
Martung, A ;
Remo, KL ;
Burley, SK ;
Hinnebusch, AG ;
Dever, TE .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (19) :7183-7191
[9]  
Cross FR, 1997, YEAST, V13, P647, DOI 10.1002/(SICI)1097-0061(19970615)13:7<647::AID-YEA115>3.0.CO
[10]  
2-#