SPATIOTEMPORAL DENOISING OF MR SPECTROSCOPIC IMAGING DATA BY LOW-RANK APPROXIMATIONS

被引:0
作者
Nguyen, Hien M. [1 ]
Peng, Xi [1 ]
Do, Minh N. [1 ]
Liang, Zhi-Pei [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
来源
2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO | 2011年
关键词
MR spectroscopic imaging; denoising; low-rank approximation; partially-separable functions; Cadzow enhancement; RECONSTRUCTION; ENHANCEMENT; SLIM;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper addresses the denoising problem associated with magnetic resonance spectroscopic imaging (MRSI), where low signal-to-noise ratio (SNR) has been a critical problem. A new scheme is proposed, which exploits two low-rank structures that exist in MRSI data, one due to partial separability and the other is due to linear predictability. Experimental results from practical data demonstrate that the proposed method provides an effective way to denoise MRSI data while preserving spatial-spectral features in a wide range of SNR values.
引用
收藏
页码:857 / 860
页数:4
相关论文
共 50 条
  • [41] Multi-scale low-rank approximation method for image denoising
    Yang Ou
    Bo Zhang
    Bailin Li
    Multimedia Tools and Applications, 2022, 81 : 20357 - 20371
  • [42] Multi-scale low-rank approximation method for image denoising
    Ou, Yang
    Zhang, Bo
    Li, Bailin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (14) : 20357 - 20371
  • [43] A Denoising Algorithm for CT Image Using Low-rank Sparse Coding
    Lei, Yang
    Xu, Dong
    Zhou, Zhengyang
    Wang, Tonghe
    Dong, Xue
    Liu, Tian
    Dhabaan, Anees
    Curran, Walter J.
    Yang, Xiaofeng
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [44] Low-rank decomposition on transformed feature maps domain for image denoising
    Qiong Luo
    Baichen Liu
    Yang Zhang
    Zhi Han
    Yandong Tang
    The Visual Computer, 2021, 37 : 1899 - 1915
  • [45] Robust Low-Rank Analysis with Adaptive Weighted Tensor for Image Denoising
    Zhang, Lei
    Liu, Cong
    DISPLAYS, 2022, 73
  • [46] Hyperspectral Image Denoising With Group Sparse and Low-Rank Tensor Decomposition
    Huang, Zhihong
    Li, Shutao
    Fang, Leyuan
    Li, Huali
    Benediktsson, Jon Atli
    IEEE ACCESS, 2018, 6 : 1380 - 1390
  • [47] Low-rank decomposition on transformed feature maps domain for image denoising
    Luo, Qiong
    Liu, Baichen
    Zhang, Yang
    Han, Zhi
    Tang, Yandong
    VISUAL COMPUTER, 2021, 37 (07) : 1899 - 1915
  • [48] VIDEO DENOISING VIA ONLINE SPARSE AND LOW-RANK MATRIX DECOMPOSITION
    Guo, Han
    Vaswani, Namrata
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [49] Kernel Wiener filtering model with low-rank approximation for image denoising
    Zhang, Yongqin
    Xiao, Jinsheng
    Peng, Jinye
    Ding, Yu
    Liu, Jiaying
    Guo, Zongming
    Zong, Xiaopeng
    INFORMATION SCIENCES, 2018, 462 : 402 - 416
  • [50] StruNet: Perceptual and low-rank regularized transformer for medical image denoising
    Ma, Yuhui
    Yan, Qifeng
    Liu, Yonghuai
    Liu, Jiang
    Zhang, Jiong
    Zhao, Yitian
    MEDICAL PHYSICS, 2023, 50 (12) : 7654 - 7669