SPATIOTEMPORAL DENOISING OF MR SPECTROSCOPIC IMAGING DATA BY LOW-RANK APPROXIMATIONS

被引:0
作者
Nguyen, Hien M. [1 ]
Peng, Xi [1 ]
Do, Minh N. [1 ]
Liang, Zhi-Pei [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
来源
2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO | 2011年
关键词
MR spectroscopic imaging; denoising; low-rank approximation; partially-separable functions; Cadzow enhancement; RECONSTRUCTION; ENHANCEMENT; SLIM;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper addresses the denoising problem associated with magnetic resonance spectroscopic imaging (MRSI), where low signal-to-noise ratio (SNR) has been a critical problem. A new scheme is proposed, which exploits two low-rank structures that exist in MRSI data, one due to partial separability and the other is due to linear predictability. Experimental results from practical data demonstrate that the proposed method provides an effective way to denoise MRSI data while preserving spatial-spectral features in a wide range of SNR values.
引用
收藏
页码:857 / 860
页数:4
相关论文
共 50 条
  • [31] Singular Values of Dual Quaternion Matrices and Their Low-Rank Approximations
    Ling, Chen
    He, Hongjin
    Qi, Liqun
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (12) : 1423 - 1458
  • [32] Comments on "An analytical algorithm for generalized low-rank approximations of matrices"
    Hu, Yafeng
    Lv, Hairong
    Zhang, Xianda
    PATTERN RECOGNITION, 2008, 41 (06) : 2133 - 2135
  • [33] MAKING THE NYSTROM METHOD HIGHLY ACCURATE FOR LOW-RANK APPROXIMATIONS
    Xia, Jianlin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (02) : A1076 - A1101
  • [34] OPTIMAL LOW-RANK APPROXIMATIONS OF BAYESIAN LINEAR INVERSE PROBLEMS
    Spantini, Alessio
    Solonen, Antti
    Cui, Tiangang
    Martin, James
    Tenorio, Luis
    Marzouk, Youssef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) : A2451 - A2487
  • [35] Review and prospect: NMR spectroscopy denoising and reconstruction with low-rank Hankel matrices and tensors
    Qiu, Tianyu
    Wang, Zi
    Liu, Huiting
    Guo, Di
    Qu, Xiaobo
    MAGNETIC RESONANCE IN CHEMISTRY, 2021, 59 (03) : 324 - 345
  • [36] Kernel Wiener filtering model with low-rank approximation for image denoising
    Zhang, Yongqin
    Xiao, Jinsheng
    Peng, Jinye
    Ding, Yu
    Liu, Jiaying
    Guo, Zongming
    Zong, Xiaopeng
    INFORMATION SCIENCES, 2018, 462 : 402 - 416
  • [37] Low-rank decomposition on transformed feature maps domain for image denoising
    Luo, Qiong
    Liu, Baichen
    Zhang, Yang
    Han, Zhi
    Tang, Yandong
    VISUAL COMPUTER, 2021, 37 (07) : 1899 - 1915
  • [38] VIDEO DENOISING VIA ONLINE SPARSE AND LOW-RANK MATRIX DECOMPOSITION
    Guo, Han
    Vaswani, Namrata
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [39] Hyperspectral Image Denoising Based on Global and Nonlocal Low-Rank Factorizations
    Zhuang, Lina
    Fu, Xiyou
    Ng, Michael K.
    Bioucas-Dias, Jose M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10438 - 10454
  • [40] A Low-Rank Tensor Dictionary Learning Method for Hyperspectral Image Denoising
    Gong, Xiao
    Chen, Wei
    Chen, Jie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 1168 - 1180