Elastic Full-Waveform Inversion With Unconverted-Wave Adjoint Propagators

被引:0
作者
Wu, Guochen [1 ]
Liang, Zhanyuan [2 ]
Zhang, Xiaoyu [2 ]
Yang, Lingyun [1 ]
机构
[1] China Univ Petr East China, Sch Geosci, Qingdao 266580, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Inst Oceanog Instrumentat, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Decoupled elastic wave equation; elastic full-waveform inversion (EFWI); high-wavenumber component; unconverted-wave equation; REFLECTION TRAVEL-TIME; NUMBER INFORMATION; MIGRATION; FWI;
D O I
10.1109/LGRS.2022.3152198
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Elastic full-waveform inversion (EFWI) can restore high-resolution model parameters by minimizing the misfit function between the modeled and observed data. However, the coupling propagation of P- and S-waves will cause the crosstalk among elastic parameters and increase the nonlinearity of EFWI. The decoupled elastic wave equation can help EFWI to weaken the crosstalk effect, hut it increases the computational cost of EFWI. In addition, the decomposition of the S-wave stress will produce artifacts. Hence, we have developed an EFWI approach with unconverted-wave adjoint propagators to recover the high-resolution model parameters. In the new EFWI, we use the unconverted-wave equation to construct the adjoint propagators without S-wave stress decomposition, which can reduce the artifacts. Since the unconverted-wave equation omits the cross term in the elastic wave equation, the computational cost of EFWI is reduced. Numerical examples have demonstrated that our EFWI can efficiently produce high-resolution models and reduce the computational cost of EFWI by about 30%.
引用
收藏
页数:5
相关论文
共 22 条
  • [1] Dong LG, 2000, CHINESE J GEOPHYS-CH, V43, P411
  • [2] Elastic least-squares reverse time migration with hybrid l1/l2 misfit function
    Gu, Bingluo
    Li, Zhenchun
    Yang, Peng
    Xu, Wencai
    Han, Jianguang
    [J]. GEOPHYSICS, 2017, 82 (03) : S271 - S291
  • [3] Retrieving Low Wavenumber Information in FWI An overview of the cycle-skipping phenomenon and solutions
    Hu, Wenyi
    Chen, Jiefu
    Liu, Jianguo
    Abubakar, Aria
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (02) : 132 - 141
  • [4] Appraisal of Instantaneous Phase-Based Functions in Adjoint Waveform Inversion
    Jimenez Tejero, Clara Estela
    Sallares, Valenti
    Ranero, Cesar R.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5185 - 5197
  • [5] Salt Reconstruction in Full-Waveform Inversion With a Parametric Level-Set Method
    Kadu, Ajinkya
    van Leeuwen, Tristan
    Mulder, Wim A.
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (02): : 305 - 315
  • [6] 4TH-ORDER FINITE-DIFFERENCE P-SV SEISMOGRAMS
    LEVANDER, AR
    [J]. GEOPHYSICS, 1988, 53 (11) : 1425 - 1436
  • [7] [李振春 Li Zhenchun], 2007, [石油地球物理勘探, Oil Geophysical Prospecting], V42, P510
  • [8] Liang ZY, 2021, GEOPHYSICS, V86, pR639, DOI [10.1190/GEO2020-0733.1, 10.1190/geo2020-0733.1]
  • [9] Time domain full waveform inversion with low frequency wavefield decompression
    Liang Zhanyuan
    Wu Guochen
    Zhang Xiaoyu
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (06) : 2330 - 2338
  • [10] An effective imaging condition for reverse-time migration using wavefield decomposition
    Liu, Faqi
    Zhang, Guanquan
    Morton, Scott A.
    Leveille, Jacques P.
    [J]. GEOPHYSICS, 2011, 76 (01) : S29 - S39