Enhanced thermoelectric figure of merit in polycrystalline carbon nanostructures

被引:21
作者
Lehmann, Thomas [1 ,2 ,3 ]
Ryndyk, Dmitry A. [1 ,2 ,3 ,4 ]
Cuniberti, Gianaurelio [1 ,2 ,3 ,4 ]
机构
[1] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Dresden Ctr Computat Mat Sci DCMS, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
关键词
GRAPHENE; TEMPERATURE; TRANSPORT; GROWTH;
D O I
10.1103/PhysRevB.92.035418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Grain boundaries are commonly observed in carbon nanostructures, but their influence on thermal and electric properties is still not completely understood. Using a combined approach of density functional tight-binding theory and nonequilibrium Green functions we investigate electron and phonon transport in carbon-based systems. In this work, quantum transport and thermoelectric properties are summarized for graphene sheets, graphene nanoribbons, and carbon nanotubes with a variety of grain boundary types in a wide temperature range. Motivated by previous findings that disorder scatters phonons more effectively than electrons, a significant improvement in the thermoelectric performance for polycrystalline systems is expected. As the effect is marginally sensitive to the grain boundary type, we demonstrate that grain boundaries are a viable tool to greatly enhance the figure of merit, paving the way for the design of new thermoelectric materials.
引用
收藏
页数:5
相关论文
共 26 条
[1]   DFTB+, a sparse matrix-based implementation of the DFTB method [J].
Aradi, B. ;
Hourahine, B. ;
Frauenheim, Th. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26) :5678-5684
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes [J].
Bandow, S ;
Asaka, S ;
Saito, Y ;
Rao, AM ;
Grigorian, L ;
Richter, E ;
Eklund, PC .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3779-3782
[4]  
Datta S., 1995, Electronic transport in mesoscopic systems
[5]   Raman spectral imaging of a carbon nanotube intramolecular junction [J].
Doorn, SK ;
O'Connell, MJ ;
Zheng, LX ;
Zhu, YT ;
Huang, SM ;
Liu, J .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   A nonequilibrium Green's function study of thermoelectric properties in single-walled carbon nanotubes [J].
Jiang, Jin-Wu ;
Wang, Jian-Sheng ;
Li, Baowen .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (01)
[8]   Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study [J].
Koepke, Justin C. ;
Wood, Joshua D. ;
Estrada, David ;
Ong, Zhun-Yong ;
He, Kevin T. ;
Pop, Eric ;
Lyding, Joseph W. .
ACS NANO, 2013, 7 (01) :75-86
[9]  
Lahiri J, 2010, NAT NANOTECHNOL, V5, P326, DOI [10.1038/NNANO.2010.53, 10.1038/nnano.2010.53]
[10]   Combined effect of strain and defects on the conductance of graphene nanoribbons [J].
Lehmann, Thomas ;
Ryndyk, Dmitry A. ;
Cuniberti, Gianaurelio .
PHYSICAL REVIEW B, 2013, 88 (12)