A note on the criterion for a best approximation by superpositions of functions

被引:0
作者
Ismailov, Vugar E. [1 ]
机构
[1] NAS Azerbaijan, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
关键词
Chebyshev alternation theorem; best approximation; path; weak*convergence; Banach-Alaoglutheorem; REPRESENTATION; INTERPOLATION;
D O I
10.4064/sm170314-9-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q be a compact subset of the d-dimensional Euclidean space, and C(Q) be the space of continuous real-valued functions on Q. We consider the problem of approximation of a function f is an element of C(Q) by superpositions of the form g o s + h o p, where s, p are fixed functions from C(Q) and g, h are variable univariate functions. We obtain a Chebyshev-type criterion for a function g0 o s + h0 o p to be a best approximation to f.
引用
收藏
页码:193 / 199
页数:7
相关论文
共 25 条