A note on the criterion for a best approximation by superpositions of functions

被引:0
作者
Ismailov, Vugar E. [1 ]
机构
[1] NAS Azerbaijan, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
关键词
Chebyshev alternation theorem; best approximation; path; weak*convergence; Banach-Alaoglutheorem; REPRESENTATION; INTERPOLATION;
D O I
10.4064/sm170314-9-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q be a compact subset of the d-dimensional Euclidean space, and C(Q) be the space of continuous real-valued functions on Q. We consider the problem of approximation of a function f is an element of C(Q) by superpositions of the form g o s + h o p, where s, p are fixed functions from C(Q) and g, h are variable univariate functions. We obtain a Chebyshev-type criterion for a function g0 o s + h0 o p to be a best approximation to f.
引用
收藏
页码:193 / 199
页数:7
相关论文
共 25 条
  • [1] [Anonymous], TRANSL MATH MONOGR
  • [2] Arnold V.I., 1963, Amer. Math. Soc. Transl., V28, P51
  • [3] INTERPOLATION BY RIDGE FUNCTIONS
    BRAESS, D
    PINKUS, A
    [J]. JOURNAL OF APPROXIMATION THEORY, 1993, 73 (02) : 218 - 236
  • [4] BROSOWSKI B, 1992, PURE A MATH, V138, P137
  • [5] Buck R. C., 1968, J APPROX THEORY, V1, P325
  • [6] When is f(x,y)=u(x)+v(y)?
    Cowsik, RC
    Klopotowski, A
    Nadkarni, MG
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (01): : 57 - 64
  • [7] de la Vallee Poussin C-J, 1919, LECONS APPROXIMATION
  • [8] Diliberto SP., 1951, Pacific J. Math., V1, P195, DOI 10.2140/pjm.1951.1.195
  • [9] GOLOMB M, 1959, NUMERICAL APPROXIMAT, P275
  • [10] Methods for computing the least deviation from the sums of functions of one variable
    Ismailov, V. E.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (05) : 883 - 888