We examine Lefschetz pencils of a certain hypersurface in P-3 over an algebraically closed field of characteristic p > 2, and determine the group structure of sections of the fiber spaces derived from the pencils. Using the structure of a Lefschetz pencil, we give a geometric proof of the unirationality of Fermat surfaces of degree p(a) + 1 with a positive integer a which was first poved by Shioda [10]. As byproducts, we also see that on the hypersurface there exists a (q(3) + q(2) + q + 1)(q+1)-symmetric configuration (resp. a ((q(3) + 1)(q(2) + 1)(q+1), (q(3) + 1)(q + 1)q(2)+1)-configuration) made up of the rational points over F-q (resp. over Fq(2)) and the lines over F-q (resp. over Fq(2)) with q = p(a).
机构:
Inst Camille Jordan, UMR 5208, Site St Etienne,23 Rue Dr P Michelon, F-42023 St Etienne, FranceInst Camille Jordan, UMR 5208, Site St Etienne,23 Rue Dr P Michelon, F-42023 St Etienne, France
Pellarin, F.
Perkins, R. B.
论文数: 0引用数: 0
h-index: 0
机构:
Heidelberg Univ, IWR, Neuenheimer Feld 368, D-69120 Heidelberg, GermanyInst Camille Jordan, UMR 5208, Site St Etienne,23 Rue Dr P Michelon, F-42023 St Etienne, France
机构:
Korea Inst Adv Study, Seoul 130722, South KoreaKorea Inst Adv Study, Seoul 130722, South Korea
Hwang, Jun-Muk
Oguiso, Keiji
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Adv Study, Seoul 130722, South Korea
Keio Univ, Kouhoku Ku, Yokohama, Kanagawa 2238521, JapanKorea Inst Adv Study, Seoul 130722, South Korea