UNIVERSALITY OF THE GEODESIC TREE IN LAST PASSAGE PERCOLATION

被引:10
|
作者
Busani, Ofer [1 ]
Ferrari, Patrik L. [2 ]
机构
[1] Univ Bristol, Sch Math, Bristol, Avon, England
[2] Univ Bonn, Inst Appl Math, Bonn, Germany
来源
ANNALS OF PROBABILITY | 2022年 / 50卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Geodesics; polymers; last passage percolation; coalescence of geodesics; Kardar-Parisi-Zhang universality; GROWTH-MODELS; FLUCTUATIONS; TASEP; DISTRIBUTIONS; SUBSEQUENCES; ASYMPTOTICS; COALESCENCE; INTERFACES; POLYMERS; PNG;
D O I
10.1214/21-AOP1530
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the geodesic tree in exponential last passage percolation. We show that for a large class of initial conditions around the origin, the line-to-point geodesic that terminates in a cylinder located around the point (N, N), and whose width and length are o(N-2/3) and o(N), respectively, agrees in the cylinder, with the stationary geodesic sharing the same end-point. In the case of the point-to-point model where the geodesic starts from the origin, we consider width delta N-2/3, length up to delta(3/2) N/(log(delta(-1)))(3), and provide lower and upper bounds for the probability that the geodesics agree in that cylinder.
引用
收藏
页码:90 / 130
页数:41
相关论文
共 50 条
  • [1] Geodesic forests in last-passage percolation
    Lopez, Sergio I.
    Pimentel, Leandro P. R.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (01) : 304 - 324
  • [2] Interlacing and Scaling Exponents for the Geodesic Watermelon in Last Passage Percolation
    Riddhipratim Basu
    Shirshendu Ganguly
    Alan Hammond
    Milind Hegde
    Communications in Mathematical Physics, 2022, 393 : 1241 - 1309
  • [3] Interlacing and Scaling Exponents for the Geodesic Watermelon in Last Passage Percolation
    Basu, Riddhipratim
    Ganguly, Shirshendu
    Hammond, Alan
    Hegde, Milind
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 393 (3) : 1241 - 1309
  • [4] One-point distribution of the geodesic in directed last passage percolation
    Liu, Zhipeng
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 184 (1-2) : 425 - 491
  • [5] One-point distribution of the geodesic in directed last passage percolation
    Zhipeng Liu
    Probability Theory and Related Fields, 2022, 184 : 425 - 491
  • [6] A universality property for last-passage percolation paths close to the axis
    Bodineau, T
    Martin, J
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2005, 10 : 105 - 112
  • [7] Kardar-Parisi-Zhang universality in first-passage percolation: the role of geodesic degeneracy
    Cordoba-Torres, Pedro
    Santalla, Silvia N.
    Cuerno, Rodolfo
    Rodriguez-Laguna, Javier
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [8] Optimal tail exponents in general last passage percolation via bootstrapping & geodesic geometry
    Ganguly, Shirshendu
    Hegde, Milind
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 186 (1-2) : 221 - 284
  • [9] Optimal tail exponents in general last passage percolation via bootstrapping & geodesic geometry
    Shirshendu Ganguly
    Milind Hegde
    Probability Theory and Related Fields, 2023, 186 : 221 - 284
  • [10] A GUE central limit theorem and universality of directed first and last passage site percolation
    Baik, J
    Suidan, TM
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (06) : 325 - 337