TRAVELING WAVE SOLUTION OF FRACTAL KdV-BURGERS-KURAMOTO EQUATION WITHIN LOCAL FRACTIONAL DIFFERENTIAL OPERATOR

被引:15
作者
Sun, Jianshe [1 ,2 ,3 ]
机构
[1] Jiaozuo Teachers Coll, Sch Math, Jiaozuo 454150, Henan, Peoples R China
[2] Jiaozuo Teachers Coll, Inst Math & Interdisciplinary Sci, Jiaozuo 454150, Henan, Peoples R China
[3] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Local Fractional Derivative; Fractal Space; Local Fractional Reduced Differential Transform Method; Approximate Analytical Solution; KdV-Burgers-Kuramoto Equation; THERMAL-CONDUCTIVITY; COMPLEX TRANSFORM; POROUS-MEDIA; MODEL;
D O I
10.1142/S0218348X21502315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, space-time fractal model about nonlinear KdV-Burgers-Kuramoto (NKBK) equation which describes nonlinear physical phenomena and involves instability, dissipation, and dispersion parameters has been put forward through coupling fractional complex transform (FCT) via local fractional derivative (LFD) for the first time. These measures are considered in the sense of local derivative operators. Analytical approximate solutions of the model are obtained by local fractional reduced differential transform method (LFRDTM). The obtained results related to physical phenomenon in Cantorian time-space reveal that the suggested project is easy to use and the calculation is more precise. The graphical representation of special solution of LFNKBK yields interesting and better physical consequences of NKBK with LFD.
引用
收藏
页数:10
相关论文
共 60 条
[1]   Laplace transform: Making the variational iteration method easier [J].
Anjum, Naveed ;
He, Ji-Huan .
APPLIED MATHEMATICS LETTERS, 2019, 92 :134-138
[2]   Solving Helmholtz Equation with Local Fractional Derivative Operators [J].
Baleanu, Dumitru ;
Jassim, Hassan Kamil ;
Al Qurashi, Maysaa .
FRACTAL AND FRACTIONAL, 2019, 3 (03) :1-12
[3]   NONLINEAR SATURATION OF DISSIPATIVE TRAPPED-ION MODE BY MODE-COUPLING [J].
COHEN, BI ;
KROMMES, JA ;
TANG, WM ;
ROSENBLUTH, MN .
NUCLEAR FUSION, 1976, 16 (06) :971-992
[4]  
Ebadian A, 2014, ELECTRON J DIFFER EQ
[5]   Fractal Derivative Model for Air Permeability in Hierarchic Porous Media [J].
Fan, Jie ;
He, Jihuan .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[6]   NEW PERSPECTIVE AIMED AT LOCAL FRACTIONAL ORDER MEMRISTOR MODEL ON CANTOR SETS [J].
Feng, Yi-Ying ;
Yang, Xiao-Jun ;
Liu, Jian-Gen ;
Chen, Zhan-Qing .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (01)
[7]  
Feng Z., 2018, SYMMETRY ANAL KDV BU
[8]   New exact solutions to the KdV-Burgers-Kuramoto equation [J].
Fu, ZT ;
Liu, SK ;
Liu, SD .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :609-616
[9]   EXACT TRAVELING-WAVE SOLUTIONS FOR ONE-DIMENSIONAL MODIFIED KORTEWEG-DE VRIES EQUATION DEFINED ON CANTOR SETS [J].
Gao, Feng ;
Yang, Xiao-Jun ;
Ju, Yang .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (01)
[10]   Exact solutions of local fractional longitudinal wave equation in a magneto-electro-elastic circular rod in fractal media [J].
Ghanbari, Behzad ;
Kumar, Devendra ;
Singh, Jagdev .
INDIAN JOURNAL OF PHYSICS, 2022, 96 (03) :787-794