Restrained double Italian domination in graphs

被引:3
作者
Volkmann, Lutz [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl 2 Math, D-52056 Aachen, Germany
关键词
Double Italian domination; restrained double Italian domination; restrained domination; ROMAN; (3)-DOMINATION;
D O I
10.22049/CCO.2021.27334.1236
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V (G). A double Italian dominating function (DIDF) is a function f : V (G) -> {0, 1, 2, 3} having the property that f(N[u]) >= 3 for every vertex u is an element of V (G) with f(u) is an element of {0, 1}, where N[u] is the closed neighborhood of u. If f is a DIDF on G, then let V-0 = {v is an element of V (G) : f(v) = 0}. A restrained double Italian dominating function (RDIDF) is a double Italian dominating function f having the property that the subgraph induced by V-0 does not have an isolated vertex. The weight of an RDIDF f is the sum Sigma(v is an element of(G)) f(v), and the minimum weight of an RDIDF on a graph G is the restrained double Italian domination number. We present bounds and Nordhaus-Gaddum type results for the restrained double Italian domination number. In addition, we determine the restrained double Italian domination number for some families of graphs.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 15 条
[1]  
Azvin F., DISCUSS MATH GRAPH T
[2]   Bounds on the outer-independent double Italian domination number [J].
Azvin, Farzaneh ;
Rad, Nader Jafari ;
Volkmann, Lutz .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) :123-136
[3]  
Chellai M., 2020, J COMBIN MATH COMB C, V115, P141
[4]   Varieties of Roman domination II [J].
Chellali, M. ;
Jafari Rad, N. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) :966-984
[5]  
Chellali M., 2021, Varieties of Roman domination in graphs, P273
[6]   Roman {2}-domination [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. ;
McRae, Alice A. .
DISCRETE APPLIED MATHEMATICS, 2016, 204 :22-28
[7]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[8]   Restrained domination in graphs [J].
Domke, GS ;
Hattingh, JH ;
Hedetniemi, ST ;
Laskar, RC ;
Markus, LR .
DISCRETE MATHEMATICS, 1999, 203 (1-3) :61-69
[9]  
Fink J. F., 1985, Periodica Mathematica Hungarica, V16, P287, DOI 10.1007/BF01848079
[10]  
Hattingh J.H., 2020, TOPICS DOMINATION GR, P129