The effect of directed photogenerated carrier separation on photocatalytic hydrogen production

被引:53
作者
Si, Yuelei [1 ,2 ]
Cao, Shuang [1 ]
Wu, Zhijiao [1 ]
Ji, Yinglu [1 ]
Mi, Yang [1 ]
Wu, Xiaochun [1 ]
Liu, Xinfeng [1 ]
Piao, Lingyu [1 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, PR, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Non-centrosymmetric; Photocatalysis; Hydrogen production; 1D heterostructure nanostructures; GOLD NANOPARTICLES; JANUS PARTICLES; FERMI-LEVEL; TIO2; EVOLUTION; NANORODS; SURFACE; COCATALYSTS; CATALYSIS; ETHANOL;
D O I
10.1016/j.nanoen.2017.10.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The one-dimensional metal-semiconductor hybrids with directed photogenerated carrier separation rather than random flow direction of photogenerated electrons and holes possess more advantages to achieve long-distance charge separation and efficient solar energy conversion efficiency. Here, we obtained the non-centrosymmetric Au/TiO2 nano-mushrooms (Au/TiO2 NMs) structures. The one-dimensional hybrid simultaneously maintains directed spatial charge separation properties and tunable light absorption. Owing to the well-designed structure, the H-2 evolution rate can reach up to 52.6 mu mol g(-1) h(-1) under sunlight irradiation from pure water without any sacrificial reagents. Based on the photocatalytic data, we can speculated that the directed spatial charge separation lead to the enhanced photocatalytic efficiency rather than the localized surface plasmon resonance (LSPR) effect of Au NRs. Besides, we confirmed the dominant electron transfer direction was from TiO2 NPs to Au NRs under sunlight irradiation.
引用
收藏
页码:488 / 493
页数:6
相关论文
共 33 条
[1]   Gold nanorods and their plasmonic properties [J].
Chen, Huanjun ;
Shao, Lei ;
Li, Qian ;
Wang, Jianfang .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :2679-2724
[2]   (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species [J].
Fang, Caihong ;
Jia, Henglei ;
Chang, Shuai ;
Ruan, Qifeng ;
Wang, Peng ;
Chen, Tao ;
Wang, Jianfang .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (10) :3431-3438
[3]   Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles [J].
Furube, Akihiro ;
Du, Luchao ;
Hara, Kohjiro ;
Katoh, Ryuzi ;
Tachiya, Masanori .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (48) :14852-+
[4]   Synthesis of tailored Au@TiO2 core-shell nanoparticles for photocatalytic reforming of ethanol [J].
Goebl, James ;
Joo, Ji Bong ;
Dahl, Michael ;
Yin, Yadong .
CATALYSIS TODAY, 2014, 225 :90-95
[5]   Facile, Solution-Based Synthesis of Soft, Nanoscale Janus Particles with Tunable Janus Balance [J].
Groeschel, Andre H. ;
Walther, Andreas ;
Loebling, Tina I. ;
Schmelz, Joachim ;
Hanisch, Andreas ;
Schmalz, Holger ;
Mueller, Axel H. E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (33) :13850-13860
[6]   Preparation of Gold/Silver/Titania Trilayered Nanorods and Their Photocatalytic Activities [J].
Horiguchi, Yoshimasa ;
Kanda, Takashi ;
Torigoe, Kanjiro ;
Sakai, Hideki ;
Abe, Masahiko .
LANGMUIR, 2014, 30 (03) :922-928
[7]   Unravelling Thiol's Role in Directing Asymmetric Growth of Au Nanorod-Au Nanoparticle Dimers [J].
Huang, Jianfeng ;
Zhu, Yihan ;
Liu, Changxu ;
Shi, Zhan ;
Fratalocchi, Andrea ;
Han, Yu .
NANO LETTERS, 2016, 16 (01) :617-623
[8]   Charge distribution between UV-irradiated TiO2 and gold nanoparticles:: Determination of shift in the Fermi level [J].
Jakob, M ;
Levanon, H ;
Kamat, PV .
NANO LETTERS, 2003, 3 (03) :353-358
[9]   Anchoring ultrafine metallic and oxidized Pt nanoclusters on yolk-shell TiO2 for unprecedentedly high photocatalytic hydrogen production [J].
Jin, Jun ;
Wang, Chao ;
Ren, Xiao-Ning ;
Huang, Shao-Zhuan ;
Wu, Min ;
Chen, Li-Hua ;
Hasan, Tawfique ;
Wang, Bin-Jie ;
Li, Yu ;
Su, Bao-Lian .
NANO ENERGY, 2017, 38 :118-126
[10]   Perfect Photon-to-Hydrogen Conversion Efficiency [J].
Kalisman, Philip ;
Nakibli, Yifat ;
Amirav, Lilac .
NANO LETTERS, 2016, 16 (03) :1776-1781