Diffusion phenomenon for second order linear evolution equations

被引:48
作者
Ikehata, R [1 ]
Nishihara, K
机构
[1] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
[2] Waseda Univ, Sch Polit Sci & Econ, Tokyo 1698050, Japan
关键词
dissipative wave equations; heat equations; asymptotic profile; optimum decay rate;
D O I
10.4064/sm158-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an abstract theory of the diffusion phenomenon for second order linear evolution equations in a Hilbert space. To derive the diffusion phenomenon, a new device developed in Ikehata-Matsuyama [5] is applied. Several applications to damped linear wave equations in unbounded domains are also given.
引用
收藏
页码:153 / 161
页数:9
相关论文
共 9 条
[1]  
CAZENAVE T, 1998, OXFORD LECT SER MATH, V13
[3]   Diffusion phenomenon for linear dissipative wave equations in an exterior domain [J].
Ikehata, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (02) :633-651
[4]  
Ikehata R., 2002, Sci. Math. Jpn, V55, P33
[5]   Selfsimilar profiles in large time asymptotics of solutions to damped wave equations [J].
Karch, G .
STUDIA MATHEMATICA, 2000, 143 (02) :175-197
[6]   L1 Decay estimates for dissipative wave equations [J].
Milani, A ;
Han, Y .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (05) :319-338
[7]   Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping [J].
Nishihara, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 137 (02) :384-395
[8]  
NISHIHARA K, IN PRESS MATH Z
[9]   On the diffusion phenomenon of quasilinear hyperbolic waves [J].
Yang, H ;
Milani, A .
BULLETIN DES SCIENCES MATHEMATIQUES, 2000, 124 (05) :415-733