BOUNDED VARIATION ON THE SIERPINSKI GASKET

被引:15
作者
Verma, S. [1 ,2 ]
Sahu, A. [1 ,2 ]
机构
[1] IIIT Allahabad, Dept Appl Sci, Prayagraj 211015, Uttar Pradesh, India
[2] VIT Bhopal Univ, Sch Adv Sci & Languages, Bhopal 466114, Madhya Pradesh, India
关键词
Sierpinski Gasket; Box Dimension; Hausdorff Dimension; Bounded Variation; DIMENSION;
D O I
10.1142/S0218348X2250147X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under certain continuity conditions, we estimate upper and lower box dimensions of the graph of a function defined on the Sierpinski gasket. We also give an upper bound for Hausdorff dimension and box dimension of the graph of a function having finite energy. Further, we introduce two sets of definitions of bounded variation for a function defined on the Sierpinski gasket. We show that fractal dimension of the graph of a continuous function of bounded variation is log 3/log 2. We also prove that the class of all bounded variation functions is closed under arithmetic operations. Furthermore, we show that every function of bounded variation is continuous almost everywhere in the sense of log 3/log 2-dimensional Hausdorff measure.
引用
收藏
页数:12
相关论文
共 27 条
[1]  
Agrawal V, 2022, RESULTS MATH, V77, DOI 10.1007/s00025-021-01565-5
[2]  
Agrawal V, 2021, EUR PHYS J-SPEC TOP, V230, P3781, DOI 10.1140/epjs/s11734-021-00304-9
[3]   On functions of bounded variation [J].
Aistleitner, Christoph ;
Pausinger, Florian ;
Svane, Anne Marie ;
Tichy, Robert F. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 162 (03) :405-418
[4]   Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates [J].
Alonso-Ruiz, Patricia ;
Baudoin, Fabrice ;
Chen, Li ;
Rogers, Luke ;
Shanmugalingam, Nageswari ;
Teplyaev, Alexander .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
[5]  
[Anonymous], 1992, Potential Anal., DOI DOI 10.1007/BF00249784
[6]  
[Anonymous], 2001, Analysis on Fractals
[7]   Transformations between Self-Referential Sets [J].
Barnsley, Michael F. .
AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (04) :291-304
[8]   On the Koksma-Hlawka inequality [J].
Brandolini, Luca ;
Colzani, Leonardo ;
Gigante, Giacomo ;
Travaglini, Giancarlo .
JOURNAL OF COMPLEXITY, 2013, 29 (02) :158-172
[9]   ANALYSIS OF MIXED WEYL-MARCHAUD FRACTIONAL DERIVATIVE AND BOX DIMENSIONS [J].
Chandra, Subhash ;
Abbas, Syed .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
[10]   THE CALCULUS OF BIVARIATE FRACTAL INTERPOLATION SURFACES [J].
Chandra, Subhash ;
Abbas, Syed .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (03)