3D super-resolution microscopy performance and quantitative analysis assessment using DNA-PAINT and DNA origami test samples

被引:24
作者
Lin, Ruisheng [1 ]
Clowsley, Alexander H. [1 ]
Lutz, Tobias [1 ]
Baddeley, David [2 ,3 ]
Soeller, Christian [1 ]
机构
[1] Univ Exeter, Living Syst Inst & Biomed Phys, Exeter, Devon, England
[2] Yale Univ, Dept Cell Biol, New Haven, CT 06520 USA
[3] Univ Auckland, Bioengn Inst, Auckland, New Zealand
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
Super-resolution microscopy; DNA-PAINT; DNA origami; Quantitative imaging; MOLECULE LOCALIZATION MICROSCOPY; DIFFRACTION-LIMIT; FLUORESCENCE; RESOLUTION; CALIBRATION; STANDARDS; TRACKING; KINETICS; BINDING;
D O I
10.1016/j.ymeth.2019.05.018
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Assessment of the imaging quality in localisation-based super-resolution techniques relies on an accurate characterisation of the imaging setup and analysis procedures. Test samples can provide regular feedback on system performance and facilitate the implementation of new methods. While multiple test samples for regular, 2D imaging are available, they are not common for more specialised imaging modes. Here, we analyse robust test samples for 3D and quantitative super-resolution imaging, which are straightforward to use, are time- and cost-effective and do not require experience beyond basic laboratory and imaging skills. We present two options for assessment of 3D imaging quality, the use of microspheres functionalised for DNA-PAINT and a commercial DNA origami sample. A method to establish and assess a qPAINT workflow for quantitative imaging is demonstrated with a second, commercially available DNA origami sample.
引用
收藏
页码:56 / 71
页数:16
相关论文
共 65 条
[41]   Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function [J].
Pavani, Sri Rama Prasanna ;
Thompson, Michael A. ;
Biteen, Julie S. ;
Lord, Samuel J. ;
Liu, Na ;
Twieg, Robert J. ;
Piestun, Rafael ;
Moerner, W. E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (09) :2995-2999
[42]  
Pawley J., 2005, Handbook of Biological Confocal Microscopy, V3rd
[43]   Steric Crowding and the Kinetics of DNA Hybridization within a DNA Nanostructure System [J].
Pinheiro, Andre V. ;
Nangreave, Jeanette ;
Jiang, Shuoxing ;
Yan, Hao ;
Liu, Yan .
ACS NANO, 2012, 6 (06) :5521-5530
[44]   Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures [J].
Raab, Mario ;
Jusuk, Ija ;
Molle, Julia ;
Buhr, Egbert ;
Bodermann, Bernd ;
Bergmann, Detlef ;
Bosse, Harald ;
Tinnefeld, Philip .
SCIENTIFIC REPORTS, 2018, 8
[45]   Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures [J].
Reuss, Matthias ;
Fordos, Ferenc ;
Blom, Hans ;
Oktem, Ozan ;
Hogberg, Bjorn ;
Brismar, Hjalmar .
NEW JOURNAL OF PHYSICS, 2017, 19
[46]   Folding DNA to create nanoscale shapes and patterns [J].
Rothemund, PWK .
NATURE, 2006, 440 (7082) :297-302
[47]  
Rubin-Delanchy P, 2015, NAT METHODS, V12, P1072, DOI [10.1038/NMETH.3612, 10.1038/nmeth.3612]
[48]   Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J].
Rust, Michael J. ;
Bates, Mark ;
Zhuang, Xiaowei .
NATURE METHODS, 2006, 3 (10) :793-795
[49]  
Sage D, 2015, NAT METHODS, V12, P717, DOI [10.1038/NMETH.3442, 10.1038/nmeth.3442]
[50]   Fluorescence nanoscopy in cell biology [J].
Sahl, Steffen J. ;
Hell, Stefan W. ;
Jakobs, Stefan .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (11) :685-701