MH UNet: A Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation

被引:28
|
作者
Ahmad, Parvez [1 ]
Jin, Hai [1 ]
Alroobaea, Roobaea [2 ]
Qamar, Saqib [3 ]
Zheng, Ran [1 ]
Alnajjar, Fady [4 ]
Aboudi, Fathia [5 ]
机构
[1] Huazhong Univ Sci & Technol, Natl Engn Res Ctr Big Data Technol & Syst, Sch Comp Sci & Technol, Serv Comp Technol & Syst Lab,Cluster & Grid Comp, Wuhan 430074, Peoples R China
[2] Taif Univ, Coll Comp & Informat Technol, Dept Comp Sci, At Taif 21944, Saudi Arabia
[3] Madanapalle Inst Technol & Sci, Dept Comp Applicat, Madanapalle 517325, Andhra Pradesh, India
[4] United Arab Emirates Univ, Coll Informat Technol, Al Ain, U Arab Emirates
[5] Univ Tunis El Manar, High Inst Med Technol Tunisia ISTMT, LRBTM Res Lab Biophys & Med Technol, Tunis 1006, Tunisia
关键词
Image segmentation; Biomedical imaging; Feature extraction; Training; Decoding; Three-dimensional displays; Convolutional neural networks; BraTS; convolutions; dense connections; encoder-decoder; ISLES; MICCAI; UNet; STROKE LESION SEGMENTATION; NEURAL-NETWORK; CNN;
D O I
10.1109/ACCESS.2021.3122543
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
UNet and its variations achieve state-of-the-art performances in medical image segmentation. In end-to-end learning, the training with high-resolution medical images achieves higher accuracy for medical image segmentation. However, the network depth, a massive number of parameters, and low receptive fields are issues in developing deep architecture. Moreover, the lack of multi-scale contextual information degrades the segmentation performance due to the different sizes and shapes of regions of interest. The extraction and aggregation of multi-scale features play an important role in improving medical image segmentation performance. This paper introduces the MH UNet, a multi-scale hierarchical-based architecture for medical image segmentation that addresses the challenges of heterogeneous organ segmentation. To reduce the training parameters and increase efficient gradient flow, we implement densely connected blocks. Residual-Inception blocks are used to obtain full contextual information. A hierarchical block is introduced between the encoder-decoder for acquiring and merging features to extract multi-scale information in the proposed architecture. We implement and validate our proposed architecture on four challenging MICCAI datasets. Our proposed approach achieves state-of-the-art performance on the BraTS 2018, 2019, and 2020 Magnetic Resonance Imaging (MRI) validation datasets. Our approach is 14.05 times lighter than the best method of BraTS 2018. In the meantime, our proposed approach has 2.2 times fewer training parameters than the top 3D approach on the ISLES 2018 Computed Tomographic Perfusion (CTP) testing dataset. MH UNet is available at https://github.com/parvezamu/MHUnet.
引用
收藏
页码:148384 / 148408
页数:25
相关论文
共 50 条
  • [1] Medical image segmentation with UNet-based multi-scale context fusion
    Yuan, Yongqi
    Cheng, Yong
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] MFLUnet: multi-scale fusion lightweight Unet for medical image segmentation
    Cao, Dianlei
    Zhang, Rui
    Zhang, Yunfeng
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (10): : 5574 - 5591
  • [3] MA-Unet:An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation
    Cai, Yutong
    Wang, Yong
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [4] MMUnet: medical image segmentation via multi-branch and multi-scale Unet
    Zheng, Kailiang
    Zhao, Li
    Zheng, Jianwei
    Chen, Huiling
    Zhang, Xiaoqin
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [5] Enhancing medical image segmentation with MA-UNet: a multi-scale attention framework
    Li, Hongzhi
    Ren, Zhanghao
    Zhu, Guoqing
    Liang, Yaoju
    Cui, Han
    Wang, Chaozeyu
    Wang, Jiaxi
    VISUAL COMPUTER, 2025,
  • [6] DMSA-UNet: Dual Multi-Scale Attention makes UNet more strong for medical image segmentation
    Li, Xiang
    Fu, Chong
    Wang, Qun
    Zhang, Wenchao
    Sham, Chiu-Wing
    Chen, Junxin
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [7] HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation
    Heidari, Moein
    Kazerouni, Amirhossein
    Soltany, Milad
    Azad, Reza
    Aghdam, Ehsan Khodapanah
    Cohen-Adad, Julien
    Merhof, Dorit
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 6191 - 6201
  • [8] Research on Medical Image Segmentation based on Multi-scale CLT
    Zhang Cai-qing
    Liu Hui
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 192 - +
  • [9] Medical Image Segmentation Based on Multi-Scale Convolution Modulation
    Zhou, Xin-Min
    Xiong, Zhi-Mou
    Shi, Chang-Fa
    Yang, Jian
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (09): : 3159 - 3171
  • [10] MSCA-UNet: multi-scale channel attention-based UNet for segmentation of medical ultrasound images
    Chen, Zihan
    Zhu, Haijiang
    Liu, Yutong
    Gao, Xiaoyu
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (05): : 6787 - 6804