Clean, robust alkali sources by intercalation within highly oriented pyrolytic graphite

被引:8
|
作者
Kohn, Rudolph N., Jr. [1 ]
Bigelow, Matthew S. [2 ]
Spanjers, Mary [3 ]
Stuhl, Benjamin K. [1 ]
Kasch, Brian L. [3 ]
Olson, Spencer E. [3 ]
Imhof, Eric A. [1 ]
Hostutler, David A. [3 ]
Squires, Matthew B. [3 ]
机构
[1] Space Dynam Lab, Albuquerque, NM 87106 USA
[2] Appl Technol Associates, Albuquerque, NM 87123 USA
[3] Air Force Res Lab, Kirtland AFB, NM 87117 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2020年 / 91卷 / 03期
关键词
THERMODYNAMIC PROPERTIES; LAMELLAR COMPOUNDS; LITHIUM; CHLORIDE; ATOMS; BEAM;
D O I
10.1063/1.5128120
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We report the fabrication, characterization, and use of rubidium vapor dispensers based on highly oriented pyrolytic graphite (HOPG) intercalated with metallic rubidium. Compared to commercial chromate salt dispensers, these intercalated HOPG (IHOPG) dispensers hold an order of magnitude more rubidium in a similar volume, require less than one-fourth the heating power, and emit less than one-half as many impurities. Appropriate processing permits exposure of the IHOPG to atmosphere for over ninety minutes without any adverse effects. Intercalation of cesium, potassium, and lithium into HOPG has also been demonstrated in the literature, which suggests that IHOPG dispensers may also be made for those metals. Published under license by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] A.c. impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite
    Kyoto Univ, Kyoto, Japan
    J Power Sources, 2 pt 2 (227-231):
  • [12] LITHIUM INTERCALATION DEINTERCALATION BEHAVIOR OF BASAL AND EDGE PLANES OF HIGHLY ORIENTED PYROLYTIC-GRAPHITE AND GRAPHITE POWDER
    TRAN, T
    KINOSHITA, K
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 386 (1-2): : 221 - 224
  • [13] Diffusion and intercalation of nitric acid into highly oriented pyrolytic graphite: An in situ conduction ESR study
    Ziatdinov, AM
    Kainara, VV
    Krivoshei, AN
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2000, 182 (02): : 709 - 715
  • [14] Conductance of highly oriented pyrolytic graphite nanocontacts
    O.I. Shklyarevskii
    S. Speller
    H. van Kempen
    Applied Physics A, 2005, 81 : 1533 - 1538
  • [15] Conductance of highly oriented pyrolytic graphite nanocontacts
    Shklyarevskii, OI
    Speller, S
    van Kempen, H
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 81 (08): : 1533 - 1538
  • [16] On superperiodic features on highly oriented pyrolytic graphite
    Feddes, B
    Kravchenko, II
    Seiberling, LE
    SCANNING, 1998, 20 (05) : 376 - 379
  • [17] Infrared ellipsometry of highly oriented pyrolytic graphite
    Humlicek, J.
    Nebojsa, A.
    Munz, F.
    Miric, M.
    Gajic, R.
    THIN SOLID FILMS, 2011, 519 (09) : 2624 - 2626
  • [18] Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG)
    Wen, Keyun
    Marrow, James
    Marsden, Barry
    JOURNAL OF NUCLEAR MATERIALS, 2008, 381 (1-2) : 199 - 203
  • [19] Migration of Ag, Cd and Cu into highly oriented pyrolytic graphite and pyrolytic coated graphite
    Jackson, JG
    Fonseca, RW
    Holcombe, JA
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1995, 50 (14) : 1837 - 1846
  • [20] A New View of Electrochemistry at Highly Oriented Pyrolytic Graphite
    Patel, Anisha N.
    Collignon, Manon Guille
    O'Connell, Michael A.
    Hung, Wendy O. Y.
    McKelvey, Kim
    Macpherson, Julie V.
    Unwin, Patrick R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) : 20117 - 20130