Weak identification in probit models with endogenous covariates

被引:1
|
作者
Dufour, Jean-Marie [1 ,2 ]
Wilde, Joachim [3 ]
机构
[1] McGill Univ, Dept Econ, Ctr Interuniv Rech Anal Org CIRANO, Leacock Bldg,Room 414,855 Sherbrooke St West, Montreal, PQ H3A 2T7, Canada
[2] McGill Univ, CIREQ, Leacock Bldg,Room 414,855 Sherbrooke St West, Montreal, PQ H3A 2T7, Canada
[3] Fachbereich Wirtschaftswissensch, Rolandstr 8, D-49069 Osnabruck, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Probit model; Weak identification; z-test; GENERALIZED-METHOD; GMM ESTIMATION; INFERENCE; ECONOMETRICS; INSTRUMENTS; RECESSIONS; PARAMETERS; LIKELIHOOD; FAILURE; MOMENTS;
D O I
10.1007/s10182-018-0325-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Weak identification is a well-known issue in the context of linear structural models. However, for probit models with endogenous explanatory variables, this problem has been little explored. In this paper, we study by simulating the behavior of the usual z-test and the LR test in the presence of weak identification. We find that the usual asymptotic z-test exhibits large level distortions (over-rejections under the null hypothesis). The magnitude of the level distortions depends heavily on the parameter value tested. In contrast, asymptotic LR tests do not over-reject and appear to be robust to weak identification.
引用
收藏
页码:611 / 631
页数:21
相关论文
共 50 条
  • [41] Bayesian Variable Selections for Probit Models with Componentwise Gibbs Samplers
    Chang, Sheng-Mao
    Chen, Ray-Bing
    Chi, Yunchan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (08) : 2752 - 2766
  • [42] Instrumental variable estimation in ordinal probit models with mismeasured predictors
    Guan, Jing
    Cheng, Hongjian
    Bollen, Kenneth A.
    Thomas, D. Roland
    Wang, Liqun
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (04): : 653 - 667
  • [43] The dynamic invariant multinomial probit model: Identification, pretesting and estimation
    Liesenfeld, Roman
    Richard, Jean-Francois
    JOURNAL OF ECONOMETRICS, 2010, 155 (02) : 117 - 127
  • [44] Composite Likelihood Estimation for Multivariate Probit Latent Traits Models
    Feddag, M. -L.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (14) : 2551 - 2566
  • [45] Conditional and unconditional categorical regression models with missing covariates
    Satten, GA
    Carroll, RJ
    BIOMETRICS, 2000, 56 (02) : 384 - 388
  • [46] Semiparametric one-step estimation of a sample selection model with endogenous covariates
    Schwiebert, Joerg
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2015, 99 (04) : 379 - 402
  • [47] Gaussian parsimonious clustering models with covariates and a noise component
    Murphy, Keefe
    Murphy, Thomas Brendan
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (02) : 293 - 325
  • [48] Extreme-Value Graphical Models With Multiple Covariates
    Yu, Hang
    Dauwels, Justin
    Jonathan, Philip
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (21) : 5734 - 5747
  • [49] Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory
    Tchatoka, Firmin Doko
    Dufour, Jean-Marie
    JOURNAL OF ECONOMETRICS, 2020, 218 (02) : 390 - 418
  • [50] Cox regression models with functional covariates for survival data
    Gellar, Jonathan E.
    Colantuoni, Elizabeth
    Needham, Dale M.
    Crainiceanu, Ciprian M.
    STATISTICAL MODELLING, 2015, 15 (03) : 256 - 278