Ergodic theorems for queuing systems with dependent inter-arrival times
被引:1
|
作者:
Lovas, Attila
论文数: 0引用数: 0
h-index: 0
机构:
Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
Budapest Univ Technol & Econ, Egry Jozsef Utca 1, H-1111 Budapest, HungaryAlfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
Lovas, Attila
[1
,2
]
Rasonyi, Miklos
论文数: 0引用数: 0
h-index: 0
机构:
Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, HungaryAlfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
Rasonyi, Miklos
[1
]
机构:
[1] Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Egry Jozsef Utca 1, H-1111 Budapest, Hungary
Queuing;
G/GI/1;
queue;
Dependent random variables;
Inter-arrival times;
Limit theorem;
Law of large numbers;
EXPONENTIAL APPROXIMATIONS;
TAIL PROBABILITIES;
LARGE DEVIATIONS;
QUEUES;
VOICE;
D O I:
10.1016/j.orl.2021.07.006
中图分类号:
C93 [管理学];
O22 [运筹学];
学科分类号:
070105 ;
12 ;
1201 ;
1202 ;
120202 ;
摘要:
We study a G/GI/1 single-server queuing model with i.i.d. service times that are independent of a stationary process of inter-arrival times. We show that the distribution of the waiting time converges to a stationary law as time tends to infinity provided that inter-arrival times satisfy a Gartner-Ellis type condition. A convergence rate is given and a law of large numbers established. These results provide tools for the statistical analysis of such systems, transcending the standard case with independent inter-arrival times. (C) 2021 Elsevier B.V. All rights reserved.