Mordell's exponential sum estimate revisited

被引:82
作者
Bourgain, J [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
D O I
10.1090/S0894-0347-05-00476-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:477 / 499
页数:23
相关论文
共 13 条
[1]   Estimates for the number of sums, and products and for exponential sums over subgroups in fields of prime order [J].
Bourgain, J ;
Konyagin, SV .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (02) :75-80
[2]   A sum-product estimate in finite fields, and applications [J].
Bourgain, J ;
Katz, N ;
Tao, T .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (01) :27-57
[3]  
BOURGAIN J, IN PRESS GAFA
[4]  
BOURGAIN J, UNPUB J LONDON MATH
[5]  
BOURGAIN J, UNPUB GEOM FUNCT ANA
[6]   An improved Mordell type bound for exponential sums [J].
Cochrane, T ;
Pinner, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) :313-320
[7]   Stepanov's method applied to binomial exponential sums [J].
Cochrane, T ;
Pinner, C .
QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 :243-255
[8]  
Friedlander JB, 2001, MATH COMPUT, V70, P1575, DOI 10.1090/S0025-5718-00-01283-7
[9]  
Friedlander JB, 2001, MATH COMPUT, V70, P1591, DOI 10.1090/S0025-5718-00-01282-5
[10]  
GOVERS T, 1998, GAFA, V8, P529