Ni cluster nucleation and growth on the anatase TiO2(101) surface: a density functional theory study

被引:17
|
作者
Wang, Yanxin [1 ]
Su, Yan [2 ,3 ]
Zhu, Mingyuan [1 ]
Kang, Lihua [1 ]
机构
[1] Shihezi Univ, Coll Chem & Chem Engn, Key Lab Green Proc Chem Engn Xinjiang Bingtuan, Shihezi 832000, Xinjiang, Peoples R China
[2] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; GOLD NANOPARTICLES; PALLADIUM CLUSTERS; CO OXIDATION; TIO2; AU/TIO2; AU; ADSORPTION; MECHANISM; PD;
D O I
10.1039/c4ra13975e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Density functional theory (DFT) calculations are carried out to study the nucleation and growth rule of Ni clusters on both a perfect and defective anatase TiO2(101) surface using supported Ni-n (n = 1-6) cluster models. Our results show that a single Ni atom prefers to adsorb at the bridge site formed by two-coordinated oxygen (2cO) atoms on the perfect TiO2(101) surface and at the 3cO-bridge site on the defective TiO2(101) surface. The active site for Ni cluster growth on the perfect TiO2(101) surface shifts from the bridge site of two 2cO atoms or the 2cO-6cTi-3cO bridge site for Ni-1, Ni-2, and Ni-3 clusters to the 2cO-5cTi bridge site for Ni-4, Ni-5, and Ni-6. The Ni cluster cohesive energy remains constant with cluster size variation on both the perfect and defective surface. The Ni-TiO2 interaction is the main driving force of the initial Ni nucleation stage, and the Ni-Ni interaction begins to control the Ni-n cluster growth process with increased cluster size.
引用
收藏
页码:16582 / 16591
页数:10
相关论文
共 50 条
  • [41] Atomic Structure of Water Monolayer on Anatase TiO2(101) Surface
    Dette, Christian
    Perez-Osorio, Miguel A.
    Mange, Shai
    Giustino, Feliciano
    Jung, Soon Jung
    Kern, Klaus
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (22) : 11954 - 11960
  • [42] First-principles study of CO adsorption on Os atom doped anatase TiO2 (101) surface
    Lin, Long
    Shi, Zhengguang
    Yan, Longbin
    Tao, Hualong
    Yao, Linwei
    Li, Shaofei
    Xie, Kun
    Huang, Jingtao
    Zhang, Zhanying
    POLYHEDRON, 2020, 191 (191)
  • [43] Adsorption of Proline and Glycine on the TiO2(110) Surface: A Density Functional Theory Study
    Tonner, Ralf
    CHEMPHYSCHEM, 2010, 11 (05) : 1053 - 1061
  • [44] Density Functional Theory Investigation of the Role of Cocatalytic Water in Methane Steam Reforming over Anatase TiO2 (101)
    Hook, Alec
    Nuber, Timothy P.
    Celik, Fuat E.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (24) : 8131 - 8143
  • [45] Theoretical study of native point defects on anatase TiO2 (101) surface
    Ma Xin-Guo
    Jiang Jian-Jun
    Liang Pei
    ACTA PHYSICA SINICA, 2008, 57 (05) : 3120 - 3125
  • [46] First principle study of Nb defects in anatase (101) TiO2 surface
    Baktash, Ardeshir
    Sasani, Alireza
    Alavizargar, Azadeh
    Mirabbaszadeh, Kavoos
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2016, 45 : 45 - 50
  • [47] Formaldehyde on TiO2 anatase (101): A DFT study
    Liu, Huazhong
    Zhao, Mingtian
    Lei, Yinkai
    Pan, Chunxu
    Xiao, Wei
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 51 (01) : 389 - 395
  • [48] Preparation of a pristine TiO2 anatase (101) surface by cleaving
    Dulub, Olga
    Diebold, Ulrike
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (08)
  • [49] Role of steps in the reactivity of the anatase TiO2(101) surface
    Gong, Xue-Qing
    Selloni, Annabella
    JOURNAL OF CATALYSIS, 2007, 249 (02) : 134 - 139
  • [50] Hydrogenation and hydrogen diffusion at the anatase TiO2(101) surface
    Nagatsuka, Naoki
    Wilde, Markus
    Fukutani, Katsuyuki
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (07)