A-numerical radius and A-norm inequalities for semi-Hilbertian space operators

被引:14
作者
Qiao, Hongwei [1 ]
Hai, Guojun [1 ]
Bai, Eburilitu [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
关键词
A-numerical radius; inequality; A-norm; semi-inner product;
D O I
10.1080/03081087.2021.1971599
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (H, <., .>) be a complex Hilbert space and A be a positive bounded linear operator on H. The semi-inner product < x, y >(A) := < Ax, y >, x, y is an element of H, induces a semi-norm parallel to . parallel to(A) on H. Let omega(A)(T) and parallel to T parallel to(A) denote the A-numerical radius and the A-operator semi-norm of an operator T in semi-Hilbertian space (H, <., .>(A)), respectively. In this paper, some new bounds for the A-numerical radius of operators in semi-Hilbertian space are obtained, which improve the existing ones. In particular, a refinement of the triangle inequality for A-operator semi-norm is also shown.
引用
收藏
页码:6891 / 6907
页数:17
相关论文
共 24 条
[1]   A generalization of the numerical radius [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 :323-334
[2]   Metric properties of projections in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) :11-28
[3]   Partial isometries in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1460-1475
[4]  
Baklouti H, 2020, LINEAR MULTILINEAR A, V68, P845, DOI 10.1080/03081087.2019.1593925
[5]   Joint numerical ranges of operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Feki, Kais ;
Ahmed, Ould Ahmed Mahmoud Sid .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 :266-284
[6]  
Bhunia P, 2020, ELECTRON J LINEAR AL, V36
[7]  
Bhunia P, 2021, B IRAN MATH SOC, V47, P435, DOI 10.1007/s41980-020-00392-8
[8]   Refinements of A-numerical radius inequalities and their applications [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
ADVANCES IN OPERATOR THEORY, 2020, 5 (04) :1498-1511
[9]   SomeA-numerical radius inequalities for semi-Hilbertian space operators [J].
Chandra Rout, Nirmal ;
Sahoo, Satyajit ;
Mishra, Debasisha .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) :980-996