Detection of ventricular fibrillation rhythm by using boosted support vector machine with an optimal variable combination

被引:27
作者
Panigrahy, D. [1 ]
Sahu, P. K. [2 ]
Albu, F. [3 ]
机构
[1] SRM Inst Sci & Technol, Coll Engn & Technol, Dept Elect & Commun Engn, Chennai 603202, Tamil Nadu, India
[2] Natl Inst Technol Rourkela, Dept Elect Engn, Rourkela 769008, Odisha, India
[3] Valahia Univ Targoviste, Dept Elect, Aleea Sinaia 13, Targoviste 130004, Romania
关键词
AdaBoost algorithm; Differential evolution (DE); Electrocardiogram (ECG); Ventricular fibrillation (VF): Ventricular tachycardia (VT); Support vector machine (SVM); FEATURE-SELECTION; ECG SIGNAL; CLASSIFICATION; TACHYCARDIA;
D O I
10.1016/j.compeleceng.2021.107035
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the ventricular fibrillation (VF) rhythm is detected by using a new approach involving the support vector machine (SVM), adaptive boosting (AdaBoost) and differential evolution (DE) algorithms with the help of an optimal variable combination. The proposed methodology has been validated on training sets and testing sets that were obtained from three databases, namely MIT-BIH malignant ventricular arrhythmia database, arrhythmia database, and CUDB database. In the evaluation phase, the proposed methodology shows superior performance in detection of the VF rhythm than competing methods: an accuracy of 98.20%, a sensitivity of 98.25%, and specificity of 98.18% using 5 s of the ECG segments. Another advantage of our method is that it needs less memory and can be implemented in real-time.
引用
收藏
页数:14
相关论文
共 24 条
[1]   Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Raghavendra, U. ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Hagiwara, Yuki .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 79 :952-959
[2]   Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection [J].
Alonso-Atienza, Felipe ;
Luis Rojo-Alvarez, Jose ;
Rosado-Munoz, Alfredo ;
Vinagre, Juan J. ;
Garcia-Alberola, Arcadi ;
Camps-Valls, Gustavo .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (02) :1956-1967
[3]   Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators [J].
Amann, Anton ;
Tratnig, Robert ;
Unterkofler, Karl .
BIOMEDICAL ENGINEERING ONLINE, 2005, 4 (1)
[4]   ECG Signal Quality During Arrhythmia and Its Application to False Alarm Reduction [J].
Behar, Joachim ;
Oster, Julien ;
Li, Qiao ;
Clifford, Gari D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (06) :1660-1666
[5]  
Fokkenrood S, 2007, LECT NOTES COMPUT SC, V4541, P110
[6]  
Greenwald SD., 1986, The development and analysis of a ventricular fibrillation detector
[7]   ECG derived feature combination versus single feature in predicting defibrillation success in out-of-hospital cardiac arrested patients [J].
Ivanovic, M. D. ;
Ring, M. ;
Baronio, F. ;
Calza, S. ;
Vukcevic, V. ;
Hadzievski, Lj ;
Maluckov, A. ;
Eskofier, B. .
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (01)
[8]   Real time detection of ventricular fibrillation and tachycardia [J].
Jekova, I ;
Krasteva, V .
PHYSIOLOGICAL MEASUREMENT, 2004, 25 (05) :1167-1178
[9]   DETECTION OF ECG CHARACTERISTIC POINTS USING WAVELET TRANSFORMS [J].
LI, CW ;
ZHENG, CX ;
TAI, CF .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1995, 42 (01) :21-28
[10]   Ventricular Fibrillation and Tachycardia Classification Using a Machine Learning Approach [J].
Li, Qiao ;
Rajagopalan, Cadathur ;
Clifford, Gari D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (06) :1607-1613