The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology

被引:69
作者
Banerjee, Rishi [1 ,2 ]
Purhonen, Janne [1 ,2 ]
Kallijarvi, Jukka [1 ,2 ]
机构
[1] Folkhalsan Res Ctr, Helsinki, Finland
[2] Univ Helsinki, Fac Med, Stem Cells & Metab Res Program, Helsinki, Finland
关键词
coenzyme Q; complex III; mitochondrial disease; oxidative phosphorylation; ubiquinone; FETAL-GROWTH-RETARDATION; IRON-SULFUR PROTEIN; RESPIRATORY-CHAIN; DIHYDROOROTATE-DEHYDROGENASE; CYTOCHROME-C; SULFIDE OXIDATION; HYDROGEN-SULFIDE; LACTIC-ACIDOSIS; PROLINE DEHYDROGENASE; ELECTRON-TRANSFER;
D O I
10.1111/febs.16164
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Coenzyme Q (CoQ, ubiquinone) is the electron-carrying lipid in the mitochondrial electron transport system (ETS). In mammals, it serves as the electron acceptor for nine mitochondrial inner membrane dehydrogenases. These include the NADH dehydrogenase (complex I, CI) and succinate dehydrogenase (complex II, CII) but also several others that are often omitted in the context of respiratory enzymes: dihydroorotate dehydrogenase, choline dehydrogenase, electron-transferring flavoprotein dehydrogenase, mitochondrial glycerol-3-phosphate dehydrogenase, proline dehydrogenases 1 and 2, and sulfide:quinone oxidoreductase. The metabolic pathways these enzymes are involved in range from amino acid and fatty acid oxidation to nucleotide biosynthesis, methylation, and hydrogen sulfide detoxification, among many others. The CoQ-linked metabolism depends on CoQ reoxidation by the mitochondrial complex III (cytochrome bc(1) complex, CIII). However, the literature is surprisingly limited as for the role of the CoQ-linked metabolism in the pathogenesis of human diseases of oxidative phosphorylation (OXPHOS), in which the CoQ homeostasis is directly or indirectly affected. In this review, we give an introduction to CIII function, and an overview of the pathological consequences of CIII dysfunction in humans and mice and of the CoQ-dependent metabolic processes potentially affected in these pathological states. Finally, we discuss some experimental tools to dissect the various aspects of compromised CoQ oxidation.
引用
收藏
页码:6936 / 6958
页数:23
相关论文
共 170 条
  • [1] Oxidation of H2S in Mammalian Cells and Mitochondria
    Abou-Hamdan, Abbas
    Guedouari-Bounihi, Hala
    Lenoir, Veronique
    Andriamihaja, Mireille
    Blachier, Francois
    Bouillaud, Frederic
    [J]. HYDROGEN SULFIDE IN REDOX BIOLOGY, PT A, 2015, 554 : 201 - 228
  • [2] Coenzyme Q biosynthesis in health and disease
    Acosta, Manuel Jesus
    Fonseca, Luis Vazquez
    Desbats, Maria Andrea
    Cerqua, Cristina
    Zordan, Roberta
    Trevisson, Eva
    Salviati, Leonardo
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2016, 1857 (08): : 1079 - 1085
  • [3] The mitochondrial respiratory chain is essential for haematopoietic stem cell function
    Anso, Elena
    Weinberg, Samuel E.
    Diebold, Lauren P.
    Thompson, Benjamin J.
    Malinge, Sebastien
    Schumacker, Paul T.
    Liu, Xin
    Zhang, Yuannyu
    Shao, Zhen
    Steadman, Mya
    Marsh, Kelly M.
    Xu, Jian
    Crispino, John D.
    Chandel, Navdeep S.
    [J]. NATURE CELL BIOLOGY, 2017, 19 (06) : 614 - +
  • [4] Ardissone A, 2015, JIMD REP, V22, P115, DOI 10.1007/8904_2015_419
  • [5] Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells
    Bajzikova, Martina
    Kovarova, Jaromira
    Coelho, Ana R.
    Boukalova, Stepana
    Oh, Sehyun
    Rohlenova, Katerina
    Svec, David
    Hubackova, Sona
    Endaya, Berwini
    Judasova, Kristyna
    Bezawork-Geleta, Ayenachew
    Kluckova, Katarina
    Chatre, Laurent
    Zobalova, Renata
    Novakova, Anna
    Vanova, Katerina
    Ezrova, Zuzana
    Maghzal, Ghassan J.
    Novais, Silvia Magalhaes
    Olsinova, Marie
    Krobova, Linda
    An, Yong Jin
    Davidova, Eliska
    Nahacka, Zuzana
    Sobol, Margarita
    Cunha-Oliveira, Teresa
    Sandoval-Acuna, Cristian
    Strnad, Hynek
    Zhang, Tongchuan
    Thanh Huynh
    Serafim, Teresa L.
    Hozak, Pavel
    Sardao, Vilma A.
    Koopman, Werner J. H.
    Ricchetti, Miria
    Oliveira, Paulo J.
    Kolar, Frantisek
    Kubista, Mikael
    Truksa, Jaroslav
    Dvorakova-Hortova, Katerina
    Pacak, Karel
    Gurlich, Robert
    Stocker, Roland
    Zhou, Yaoqi
    Berridge, Michael V.
    Park, Sunghyouk
    Dong, Lanfeng
    Rohlena, Jakub
    Neuzil, Jiri
    [J]. CELL METABOLISM, 2019, 29 (02) : 399 - +
  • [6] Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ
    Barel, Ortal
    Shorer, Zamir
    Flusser, Hagit
    Ofir, Rivka
    Narkis, Ginat
    Finer, Gal
    Shalev, Hanah
    Nasasra, Ahmad
    Saada, Ann
    Birk, Ohad S.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 82 (05) : 1211 - 1216
  • [7] Superoxide generation by complex III: From mechanistic rationales to functional consequences
    Bleier, Lea
    Droese, Stefan
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2013, 1827 (11-12): : 1320 - 1331
  • [8] TTC19 Plays a Husbandry Role on UQCRFS1 Turnover in the Biogenesis of Mitochondrial Respiratory Complex III
    Bottani, Emanuela
    Cerutti, Raffaele
    Harbour, Michael E.
    Ravaglia, Sabrina
    Dogan, Sukru Anil
    Giordano, Carla
    Fearnley, Ian M.
    D'Amati, Giulia
    Viscomi, Carlo
    Fernandez-Vizarra, Erika
    Zeviani, Massimo
    [J]. MOLECULAR CELL, 2017, 67 (01) : 96 - +
  • [9] Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling
    Brand, Martin D.
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2016, 100 : 14 - 31
  • [10] Leflunomide: mode of action in the treatment of rheumatoid arthritis
    Breedveld, FC
    Dayer, JM
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2000, 59 (11) : 841 - 849