Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer

被引:227
作者
Khorrami, Mohammadhadi [1 ]
Prasanna, Prateek [1 ]
Gupta, Amit [2 ]
Patil, Pradnya [3 ]
Velu, Priya D. [4 ]
Thawani, Rajat [5 ]
Corredor, German [1 ]
Alilou, Mehdi [1 ]
Bera, Kaustav [1 ]
Fu, Pingfu [6 ]
Feldman, Michael [7 ]
Velcheti, Vamsidhar [8 ]
Madabhushi, Anant [1 ,9 ]
机构
[1] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[2] Univ Hosp, Dept Radiol Cardiothorac Imaging, Cleveland, OH USA
[3] Cleveland Clin, Dept Solid Tumor Oncol, Cleveland, OH 44106 USA
[4] Weill Cornell Med Phys, Pathol & Lab Med, New York, NY USA
[5] Maimonides Hosp, Dept Internal Med, Brooklyn, NY 11219 USA
[6] CWRU, Dept Populat & Quantitat Hlth Sci, Cleveland, OH USA
[7] Hosp Univ Penn, Pathol & Lab Med, 3400 Spruce St, Philadelphia, PA 19104 USA
[8] NYU Langone Hlth, Dept Hematol & Oncol, New York, NY USA
[9] Louis Stokes Cleveland Vet Adm Med Ctr, Cleveland, OH USA
关键词
TUMOR-INFILTRATING LYMPHOCYTES; PD-L1; EXPRESSION; HETEROGENEITY; MICROENVIRONMENT; INHIBITORS; DOCETAXEL; NIVOLUMAB; BIOMARKER; CRITERIA; GROWTH;
D O I
10.1158/2326-6066.CIR-19-0476
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
No predictive biomarkers can robustly identify patients with non-small cell lung cancer (NSCLC) who will benefit from immune checkpoint inhibitor (ICI) therapies. Here, in a machine learning setting, we compared changes (" delta") in the radiomic texture (DelRADx) of CT patterns both within and outside tumor nodules before and after two to three cycles of ICI therapy. We found that DelRADx patterns could predict response to ICI therapy and overall survival (OS) for patients with NSCLC. We retrospectively analyzed data acquired from 139 patients with NSCLC at two institutions, who were divided into a discovery set (D1 = 50) and two independent validation sets (D-2 = 62, D-3 = 27). Intranodular and perinodular texture descriptors were extracted, and the relative differences were computed. A linear discriminant analysis (LDA) classifier was trained with 8 DelRADx features to predict RECIST-derived response. Association of delta-radiomic risk score (DRS) with OS was determined. The association of DelRADx features with tumor-infiltrating lymphocyte (TIL) density on the diagnostic biopsies (n = 36) was also evaluated. The LDA classifier yielded an AUC of 0.88 +/- 0.08 in distinguishing responders from nonresponders in D1, and 0.85 and 0.81 in D-2 and D-3. DRS was associated with OS [HR: 1.64; 95% confidence interval (CI), 1.22-2.21; P = 0.0011; C-index = 0.72). Peritumoral Gabor features were associated with the density of TILs on diagnostic biopsy samples. Our results show that DelRADx could be used to identify early functional responses in patients with NSCLC.
引用
收藏
页码:108 / 119
页数:12
相关论文
共 69 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data [J].
Aguiar, Pedro N., Jr. ;
De Mello, Ramon Andrade ;
Hall, Peter ;
Tadokoro, Hakaru ;
de Lima, Gilberto .
IMMUNOTHERAPY, 2017, 9 (06) :499-506
[3]   The role of PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: a network meta-analysis [J].
Aguiar, Pedro N., Jr. ;
Santoro, Ilka Lopes ;
Tadokoro, Hakaru ;
Lopes, Gilberto de Lima ;
Filardi, Bruno Andraus ;
Oliveira, Pedro ;
Mountzios, Giannis ;
de Mello, Ramon Andrade .
IMMUNOTHERAPY, 2016, 8 (04) :479-488
[4]   Immune checkpoint inhibitors for advanced non-small cell lung cancer: emerging sequencing for new treatment targets [J].
Aguiar, Pedro Nazareth ;
De Mello, Ramon Andrade ;
Noia Barreto, Carmelia Maria ;
Perry, Luke Alastair ;
Penny-Dimri, Jahan ;
Tadokoro, Hakaru ;
Lopes, Gilberto de Lima .
ESMO OPEN, 2017, 2 (03)
[5]  
Alilou M, 2019, P SPIE MED IM 2019 2
[6]  
[Anonymous], 2018, J IMMUNOTHER CANCER, V6, P114, DOI DOI 10.1186/s40425-018-0422-y
[7]  
[Anonymous], 1980, TEXTURED IMAGE SEGME
[8]   The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: A resource for the development of change-analysis software [J].
Armato, S. G., III ;
Meyer, C. R. ;
McNitt-Gray, M. F. ;
McLennan, G. ;
Reeves, A. P. ;
Croft, B. Y. ;
Clarke, L. P. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 84 (04) :448-456
[9]   Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas [J].
Beig, Niha ;
Khorrami, Mohammadhadi ;
Alilou, Mehdi ;
Prasanna, Prateek ;
Braman, Nathaniel ;
Orooji, Mahdi ;
Rakshit, Sagar ;
Bera, Kaustav ;
Rajiah, Prabhakar ;
Ginsberg, Jennifer ;
Donatelli, Christopher ;
Thawani, Rajat ;
Yang, Michael ;
Jacono, Frank ;
Tiwari, Pallavi ;
Velcheti, Vamsidhar ;
Gilkeson, Robert ;
Linden, Philip ;
Madabhushi, Anant .
RADIOLOGY, 2019, 290 (03) :783-792
[10]   Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma [J].
Beig, Niha ;
Patel, Jay ;
Prasanna, Prateek ;
Hill, Virginia ;
Gupta, Amit ;
Correa, Ramon ;
Bera, Kaustav ;
Singh, Salendra ;
Partovi, Sasan ;
Varadan, Vinay ;
Ahluwalia, Manmeet ;
Madabhushi, Anant ;
Tiwari, Pallavi .
SCIENTIFIC REPORTS, 2018, 8