Microscopic origin of shape coexistence in the N=90, Z=64 region

被引:14
作者
Bonatsos, Dennis [1 ]
Karakatsanis, K. E. [1 ,2 ,3 ]
Martinou, Andriana [1 ]
Mertzimekis, T. J. [4 ]
Minkov, N. [5 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Nucl & Particle Phys, GR-15310 Athens, Greece
[2] Univ Zagreb, Fac Sci, Dept Phys, HR-10000 Zagreb, Croatia
[3] Aristotle Univ Thessaloniki, Phys Dept, GR-54124 Thessaloniki, Greece
[4] Natl & Kapodistrian Univ Athens, Dept Phys, Zografou Campus, GR-15784 Athens, Greece
[5] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, 72 Tzarigrad Rd, Sofia 1784, Bulgaria
关键词
Shape coexistence; Covariant density functional theory; QUANTUM PHASE-TRANSITIONS;
D O I
10.1016/j.physletb.2022.137099
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A microscopic explanation of the nature of shape coexistence in the N=90, Z=64 region is suggested, based on calculations of single particle energies through standard covariant density functional theory. It is suggested that shape coexistence in the N=90 region is caused by the protons, which create neutron particle-hole (p-h) excitations across the N=112 3-dimensional isotropic harmonic oscillator (3D-H0) magic number, signaling the start of the occupation of the 1i13/2 intruder orbital, which triggers stronger proton-neutron interaction, causing the onset of the deformation and resulting in the shape/phase transition from spherical to deformed nuclei described by the X(5) critical point symmetry. A similar effect is seen in the N=60, Z=40 region, in which p-h excitations across the N=70 3D-HO magic number occur, signaling the start of the occupation of the 1h11/2 intruder orbital. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 27 条
[1]  
Bonatsos D., 2021, Bulg. J. Phys., V48, P441
[2]   Proxy-SU(3) symmetry in heavy deformed nuclei [J].
Bonatsos, Dennis ;
Assimakis, I. E. ;
Minkov, N. ;
Martinou, Andriana ;
Cakirli, R. B. ;
Casten, R. F. ;
Blaum, K. .
PHYSICAL REVIEW C, 2017, 95 (06)
[3]   Analytic predictions for nuclear shapes, prolate dominance, and the prolate-oblate shape transition in the proxy-SU(3) model [J].
Bonatsos, Dennis ;
Assimakis, I. E. ;
Minkov, N. ;
Martinou, Andriana ;
Sarantopoulou, S. ;
Cakirli, R. B. ;
Casten, R. F. ;
Blaum, K. .
PHYSICAL REVIEW C, 2017, 95 (06)
[4]   Indication of a mini-valence Wigner-like energy in heavy nuclei [J].
Cakirli, R. B. ;
Blaum, K. ;
Casten, R. F. .
PHYSICAL REVIEW C, 2010, 82 (06)
[5]   Quantum phase transitions and structural evolution in nuclei [J].
Casten, R. F. ;
McCutchan, E. A. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2007, 34 (07) :R285-R320
[6]   NPNN SYSTEMATICS IN HEAVY-NUCLEI [J].
CASTEN, RF .
NUCLEAR PHYSICS A, 1985, 443 (01) :1-28
[7]   Quantum phase transitions in the shapes of atomic nuclei [J].
Cejnar, Pavel ;
Jolie, Jan ;
Casten, Richard F. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (03) :2155-2212
[8]   UNIFIED SHELL-MODEL DESCRIPTION OF NUCLEAR-DEFORMATION [J].
FEDERMAN, P ;
PITTEL, S .
PHYSICAL REVIEW C, 1979, 20 (02) :820-829
[9]   Subtle connection between shape coexistence and quantum phase transition: The Zr case [J].
Garcia-Ramos, J. E. ;
Heyde, K. .
PHYSICAL REVIEW C, 2020, 102 (05)
[10]   An experimental view on shape coexistence in nuclei [J].
Garrett, Paul E. ;
Zielinska, Magda ;
Clement, Emmanuel .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2022, 124