共 37 条
Structural variations in mesoporous materials with cubic Pm(3)over-barn symmetry
被引:6
作者:
Atluri, Rambabu
[1
]
Bacsik, Zoltan
[2
]
Hedin, Niklas
[2
]
Garcia-Bennett, Alfonso E.
[1
]
机构:
[1] Uppsala Univ, Angstrom Lab, Dept Engn Sci Nanotechnol & Funct Mat, S-75121 Uppsala, Sweden
[2] Stockholm Univ, Arrhenius Lab, Dept Mat & Environm Chem, Berzelii Ctr EXSELENT Porous Mat, SE-10691 Stockholm, Sweden
关键词:
Amphiphilic surfactants;
Mesoporous materials;
Electron microscopy;
Structural solutions;
Gas separation;
PHASE-TRANSFORMATION;
SILICA STRUCTURES;
PORE-SIZE;
SURFACTANT;
SBA-1;
MORPHOLOGY;
MESOSTRUCTURES;
COPOLYMER;
TRIBLOCK;
BROMIDE;
D O I:
10.1016/j.micromeso.2010.04.007
中图分类号:
O69 [应用化学];
学科分类号:
081704 ;
摘要:
The fine structural details of mesoporous materials possessing Pm (3) over barn symmetry prepared with varying amphiphilic surfactants under acid and alkaline conditions are investigated using electron crystallography and sorption studies. The structural data derived is used to understand the parameters that govern the formation of cavity-windows and to propose synthetic strategies in order to control independently the size of the cavities and cavity-windows. Results support that whilst attainment of Pm (3) over barn cubic packing is due to the overall surfactant geometry, the formation of cavity-windows is associated with the hydration layer formed at the interphase between the surfactant and the silica wall. The charge density at the micelle surface may be tailored using two strategies: (i) using dicationic gemini surfactants at low pHs resulting in an increase in the hydration layer; or (ii) by using co-structure directing agents such as organoalkoxysilanes which reduce the hydration layer surrounding the micelles. The latter leads to the formation of higher cavity sizes and may be useful for tuning fine structural details of mesoporous materials when considering their use in important applications such as gas separation. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 35
页数:9
相关论文