Cascade Enzymatic Hydrolysis Coupling with Ultrafine Grinding Pretreatment for Sugarcane Bagasse Saccharification

被引:0
|
作者
Yuan, Zheng-qiu [1 ,2 ]
Long, Jin-xing [1 ]
Wang, Tie-jun [1 ]
Lin, Yu-qin [3 ]
Zhang, Qi [1 ]
Ma, Long-long [1 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, Key Lab Renewable Energy, Guangzhou 510640, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Xiangtan Univ, Sch Chem Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Sugarcane bagasse; Ultrafine grinding pretreatment; Cascade enzymatic hydrolysis; Reducing sugars; Glucose; ETHANOL-PRODUCTION; CORN STOVER; ACID; BIOMASS; DIGESTIBILITY; CONVERSION;
D O I
10.1063/1674-0068/28/cjcp1502014
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The biorefinery process for sugarcane bagasse saccharification generally requires significant accessibility of cellulose. We reported a novel method of cascade cellulase enzymatic hydrolysis coupling with ultrafine grinding pretreatment for sugarcane bagasse saccharification. Three enzymatic hydrolysis modes including single cellulase enzymatic hydrolysis, mixed cellulase enzymatic hydrolysis, and cascade cellulase enzymatic hydrolysis were compared. The changes on the functional group and surface morphology of bagasse during cascade cellulase enzymatic hydrolysis were also examined by FT-IR and SEM respectively. The results showed that cascade enzymatic hydrolysis was the most efficient way to enhance the sugarcane bagasse saccharification. More than 65% of reducing sugar yield with 90.1% of glucose selectivity was achieved at 50 degrees C, pH=4.8 for 72 h (1200 r/min) with cellulase I of 7.5 FPU/g substrate and cellulase II of 5 FPU/g substrate.
引用
收藏
页码:355 / 360
页数:6
相关论文
共 50 条
  • [1] Saccharification of sugarcane bagasse by magnetic carbon-based solid acid pretreatment and enzymatic hydrolysis
    Lu, Si
    Wang, Qiong
    Liang, Zheng
    Wang, Wen
    Liang, Cuiyi
    Wang, Zhongming
    Yuan, Zhenhong
    Lan, Ping
    Qi, Wei
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 160
  • [2] Enhancing enzymatic saccharification of sugarcane bagasse by combinatorial pretreatment and Tween 80
    Hongdan Zhang
    Weiqi Wei
    Jiajie Zhang
    Shihang Huang
    Jun Xie
    Biotechnology for Biofuels, 11
  • [3] Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment
    Zhang Hongdan
    Xu Shaohua
    Wu Shubin
    BIORESOURCE TECHNOLOGY, 2013, 143 : 391 - 396
  • [4] Novel Pretreatment Methods to Improve Enzymatic Saccharification of Sugarcane Bagasse: A Report
    Saeed, Saad
    Saleem, Mahmood
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2018, 37 (05): : 225 - 234
  • [5] Enhancing enzymatic saccharification of sugarcane bagasse by combinatorial pretreatment and Tween 80
    Zhang, Hongdan
    Wei, Weiqi
    Zhang, Jiajie
    Huang, Shihang
    Xie, Jun
    BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [6] Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis
    Biswas, Rajib
    Uellendahl, H.
    Ahring, B. K.
    BIOMASS & BIOENERGY, 2014, 61 : 104 - 113
  • [7] Kinetics of Lime Pretreatment of Sugarcane Bagasse to Enhance Enzymatic Hydrolysis
    Laura L. G. Fuentes
    Sarita C. Rabelo
    Rubens Maciel Filho
    Aline C. Costa
    Applied Biochemistry and Biotechnology, 2011, 163 : 612 - 625
  • [8] The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse
    Mesa, L.
    Gonzalez, E.
    Cara, C.
    Gonzalez, M.
    Castro, E.
    Mussatto, S. I.
    CHEMICAL ENGINEERING JOURNAL, 2011, 168 (03) : 1157 - 1162
  • [9] Ethanol pretreatment of sugarcane bagasse and its effect on enzymatic hydrolysis
    Wu, Shu-Bin
    Xu, Shao-Hua
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2014, 42 (07): : 124 - 131
  • [10] Kinetics of Lime Pretreatment of Sugarcane Bagasse to Enhance Enzymatic Hydrolysis
    Fuentes, Laura L. G.
    Rabelo, Sarita C.
    Maciel Filho, Rubens
    Costa, Aline C.
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2011, 163 (05) : 612 - 625