On the well-posedness of the Cauchy problem for the equation of radiative transfer with Fresnel matching conditions

被引:15
|
作者
Prokhorov, I. V. [1 ,2 ]
Sushchenko, A. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Far Eastern Branch, Vladivostok 690022, Russia
[2] Far Eastern Fed Univ, Vladivostok, Russia
基金
俄罗斯科学基金会;
关键词
integrodifferential equations; nonstationary equations; Cauchy problem; Fresnel matching conditions; Hille-Yosida theorem; BOUNDARY-VALUE-PROBLEM; GENERALIZED CONJUGATION CONDITIONS; COMPTON-SCATTERING; TRANSPORT-EQUATION;
D O I
10.1134/S0037446615040151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the well-posedness of the Cauchy problem for the nonstationary equation of radiative transfer in a three-dimensional bounded domain with Fresnel matching conditions on the interfaces. We prove the existence of a unique strongly continuous semigroup of resolvent operators, and obtain stabilization conditions for nonstationary solutions.
引用
收藏
页码:736 / 745
页数:10
相关论文
共 50 条