Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas

被引:0
作者
Trotzky, S. [1 ,2 ,3 ]
Chen, Y-A. [1 ,2 ,3 ]
Flesch, A. [4 ,5 ]
McCulloch, I. P. [6 ]
Schollwoeck, U. [1 ,7 ]
Eisert, J. [7 ,8 ,9 ]
Bloch, I. [1 ,2 ,3 ]
机构
[1] Univ Munich, Fak Phys, D-80798 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-54099 Mainz, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[5] Forschungszentrum Julich, JARA, D-52425 Julich, Germany
[6] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[7] Inst Adv Study, D-14193 Berlin, Germany
[8] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[9] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
关键词
MATRIX RENORMALIZATION-GROUP; ATOMIC MOTT INSULATOR; OPTICAL LATTICES; EINSTEIN CONDENSATE; DYNAMICS; PHYSICS;
D O I
10.1038/NPHYS2232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum-entropy principle describes which quantum states can be expected in equilibrium, but not how closed quantum many-body systems dynamically equilibrate. Here, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we follow its dynamics in terms of quasi-local densities, currents and coherences-all showing a fast relaxation towards equilibrium values. Numerical calculations based on matrix-product states are in an excellent quantitative agreement with the experimental data. The system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms can keep track of.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 30 条
[11]   Collapse and revival of the matter wave field of a Bose-Einstein condensate [J].
Greiner, M ;
Mandel, O ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 419 (6902) :51-54
[12]  
Hastings M. B, 2008, SYNCHRONIZATION DEPH
[13]   Non-equilibrium coherence dynamics in one-dimensional Bose gases [J].
Hofferberth, S. ;
Lesanovsky, I. ;
Fischer, B. ;
Schumm, T. ;
Schmiedmayer, J. .
NATURE, 2007, 449 (7160) :324-+
[14]   Cold bosonic atoms in optical lattices [J].
Jaksch, D ;
Bruder, C ;
Cirac, JI ;
Gardiner, CW ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3108-3111
[15]   The cold atom Hubbard toolbox [J].
Jaksch, D ;
Zoller, P .
ANNALS OF PHYSICS, 2005, 315 (01) :52-79
[16]   Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond [J].
Lewenstein, Maciej ;
Sanpera, Anna ;
Ahufinger, Veronica ;
Damski, Bogdan ;
Sen, Aditi ;
Sen, Ujjwal .
ADVANCES IN PHYSICS, 2007, 56 (02) :243-379
[17]   Efficient approximation of the dynamics of one-dimensional quantum spin systems [J].
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[18]   Patterned loading of a Bose-Einstein condensate into an optical lattice [J].
Peil, S ;
Porto, JV ;
Tolra, BL ;
Obrecht, JM ;
King, BE ;
Subbotin, M ;
Rolston, SL ;
Phillips, WD .
PHYSICAL REVIEW A, 2003, 67 (05) :4
[19]   Colloquium: Nonequilibrium dynamics of closed interacting quantum systems [J].
Polkovnikov, Anatoli ;
Sengupta, Krishnendu ;
Silva, Alessandro ;
Vengalattore, Mukund .
REVIEWS OF MODERN PHYSICS, 2011, 83 (03) :863-883
[20]   Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate [J].
Sadler, L. E. ;
Higbie, J. M. ;
Leslie, S. R. ;
Vengalattore, M. ;
Stamper-Kurn, D. M. .
NATURE, 2006, 443 (7109) :312-315