Predicting new superconductors and their critical temperatures using machine learning

被引:48
作者
Roter, B. [1 ]
Dordevic, S., V [1 ]
机构
[1] Univ Akron, Dept Phys, Akron, OH 44325 USA
来源
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS | 2020年 / 575卷
关键词
Machine learning; High temperature superconductors;
D O I
10.1016/j.physc.2020.1353689
中图分类号
O59 [应用物理学];
学科分类号
摘要
We used the superconductors in the SuperCon database to construct element vectors and then perform machine learning of their critical temperatures (T-c). Only the chemical composition of superconductors was used in this procedure. No physical predictors (neither experimental nor computational) of any kind were used. We achieved the coefficient of determination R-2 similar or equal to 0.93, which is comparable and in some cases higher than similar estimates using other artificial intelligence techniques. Based on this machine learning model, we predicted several new superconductors with high critical temperatures. We also discuss several factors that limit the learning process and suggest possible ways to overcome them.
引用
收藏
页数:4
相关论文
共 25 条
[1]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[2]  
[Anonymous], ARXIV181201995
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Do organic and other exotic superconductors fail universal scaling relations? [J].
Dordevic, S. V. ;
Basov, D. N. ;
Homes, C. C. .
SCIENTIFIC REPORTS, 2013, 3
[6]   Superconductivity at 250 K in lanthanum hydride under high pressures [J].
Drozdov, A. P. ;
Kong, P. P. ;
Minkov, V. S. ;
Besedin, S. P. ;
Kuzovnikov, M. A. ;
Mozaffari, S. ;
Balicas, L. ;
Balakirev, F. F. ;
Graf, D. E. ;
Prakapenka, V. B. ;
Greenberg, E. ;
Knyazev, D. A. ;
Tkacz, M. ;
Eremets, M. I. .
NATURE, 2019, 569 (7757) :528-+
[7]   A data-driven statistical model for predicting the critical temperature of a superconductor [J].
Hamidieh, Kam .
COMPUTATIONAL MATERIALS SCIENCE, 2018, 154 :346-354
[8]  
Hastie R. T. T., 2009, The elements of statistical learning: Data mining, inference, and prediction, DOI DOI 10.1007/978
[9]   Materials science with large-scale data and informatics: Unlocking new opportunities [J].
Hill, Joanne ;
Mulholland, Gregory ;
Persson, Kristin ;
Seshadri, Ram ;
Wolverton, Chris ;
Meredig, Bryce .
MRS BULLETIN, 2016, 41 (05) :399-409
[10]   Correlations between normal-state properties and superconductivity [J].
Hirsch, JE .
PHYSICAL REVIEW B, 1997, 55 (14) :9007-9024