EXTREME VALUES OF THE ZETA FUNCTION AT CRITICAL POINTS

被引:3
作者
Gonek, S. M. [1 ]
Montgomery, H. L. [2 ]
机构
[1] Univ Rochester, Rochester, NY USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/qmath/haw022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider large and small values of vertical bar zeta(rho(1))vertical bar when zeta' (rho(1)) = 0 and Re rho(1) > 1.
引用
收藏
页码:483 / 505
页数:23
相关论文
共 12 条
[1]  
Bohr H., 1933, REND CIRC MAT PALERM, V57, P123
[2]  
Chebyshev P. L., 1881, ZAPISKI IMPER AKA S3, V40
[3]   ASYMPTOTIC FORMULA FOR COORDINATES OF ZEROS OF SECTIONS OF ZETA FUNCTION, ZETA N(S), NEAR S=1 [J].
LEVINSON, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (04) :985-987
[4]  
Littlewood J.E., 1928, Proc. London Math. Soc. (2), V27, P349
[5]  
Littlewood JE, 1926, P LOND MATH SOC, V24, P175
[6]  
Markov N. Sonin, 1907, IMPER AKAD, VII, P335
[7]   HILBERTS INEQUALITY [J].
MONTGOMERY, HL ;
VAUGHAN, RC .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 8 (MAY) :73-82
[8]  
Montgomery HL., 2007, Multiplicative Number Theory I: Classical Theory
[9]   Geometric properties of the zeta function [J].
Montgomery, Hugh L. ;
Thompson, John G. .
ACTA ARITHMETICA, 2012, 155 (04) :373-396
[10]  
Titchmarsh E. C., 1933, Q J MATH OXFORD, V4, P64