Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

被引:86
作者
Aziz, Md. Abdul [1 ]
Shanmugam, Sangaraju [1 ]
机构
[1] DGIST, Dept Energy Syst Engn, 333 Techno Jungang Daero, Dalseong Gun 42988, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
Vanadium redox flow battery; Nafion composite membrane; ZrO2; nanotubes; Electrospinning; Vanadium crossover; PROTON-EXCHANGE MEMBRANES; POLY(ETHER ETHER KETONE); FUEL-CELLS; HYBRID MEMBRANE; DMFC MEMBRANES; ENERGY-STORAGE; BLEND MEMBRANE; ELECTROLYTE; CHALLENGES; FLUORIDE);
D O I
10.1016/j.jpowsour.2016.10.113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm(-1)) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 x 10(-9) cm(2) min(-1)) and superior ion selectivity (2.95 x 10(7) S min cm(-3)). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm(-2) current density. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 44
页数:9
相关论文
共 47 条
  • [1] Function and characterization of metal oxide-naflon composite membranes for elevated-temperature H2/O2 PEM fuel cells
    Adjemian, KT
    Dominey, R
    Krishnan, L
    Ota, H
    Majsztrik, P
    Zhang, T
    Mann, J
    Kirby, B
    Gatto, L
    Velo-Simpson, M
    Leahy, J
    Srinivasant, S
    Benziger, JB
    Bocarsly, AB
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (09) : 2238 - 2248
  • [2] FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes
    Arico', AS
    Baglio, V
    Di Blasi, A
    Antonucci, V
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (10) : 862 - 866
  • [3] Sulfonated Block Poly(arylene ether sulfone) Membranes for Fuel Cell Applications via Oligomeric Sulfonation
    Bae, Byungchan
    Hoshi, Takayuki
    Miyatake, Kenji
    Watanabe, Masahiro
    [J]. MACROMOLECULES, 2011, 44 (10) : 3884 - 3892
  • [4] Nafion-TiO2 composite DMFC membranes:: physico-chemical properties of the filler versus electrochemical performance
    Baglio, V
    Aricò, AS
    Di Blasi, A
    Antonucci, V
    Antonucci, PL
    Licoccia, S
    Traversa, E
    Fiory, FS
    [J]. ELECTROCHIMICA ACTA, 2005, 50 (05) : 1241 - 1246
  • [5] Sulfonated poly(ether ether ketone) membranes containing pendent carboxylic acid groups and their application in vanadium flow battery
    Chen, Dongju
    Li, Xianfeng
    [J]. JOURNAL OF POWER SOURCES, 2014, 247 : 629 - 635
  • [6] Functional Materials for Rechargeable Batteries
    Cheng, Fangyi
    Liang, Jing
    Tao, Zhanliang
    Chen, Jun
    [J]. ADVANCED MATERIALS, 2011, 23 (15) : 1695 - 1715
  • [7] Properties and fuel cell performance of proton exchange membranes prepared from disulfonated poly(sulfide sulfone)
    Dai, Hua
    Zhang, Huamin
    Luo, Qingtao
    Zhang, Yu
    Bi, Cheng
    [J]. JOURNAL OF POWER SOURCES, 2008, 185 (01) : 19 - 25
  • [8] Proton-exchange membranes based on sulfonated poly(ether ether ketone)/polyaniline blends for all- and air-vanadium redox flow battery applications
    David, Oana
    Percin, Korcan
    Luo, Tao
    Gendel, Youri
    Wessling, Matthias
    [J]. JOURNAL OF ENERGY STORAGE, 2015, 1 (65-71) : 65 - 71
  • [9] Deng Q, 1998, J APPL POLYM SCI, V68, P747, DOI 10.1002/(SICI)1097-4628(19980502)68:5<747::AID-APP7>3.0.CO
  • [10] 2-O