Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

被引:86
|
作者
Aziz, Md. Abdul [1 ]
Shanmugam, Sangaraju [1 ]
机构
[1] DGIST, Dept Energy Syst Engn, 333 Techno Jungang Daero, Dalseong Gun 42988, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
Vanadium redox flow battery; Nafion composite membrane; ZrO2; nanotubes; Electrospinning; Vanadium crossover; PROTON-EXCHANGE MEMBRANES; POLY(ETHER ETHER KETONE); FUEL-CELLS; HYBRID MEMBRANE; DMFC MEMBRANES; ENERGY-STORAGE; BLEND MEMBRANE; ELECTROLYTE; CHALLENGES; FLUORIDE);
D O I
10.1016/j.jpowsour.2016.10.113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm(-1)) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 x 10(-9) cm(2) min(-1)) and superior ion selectivity (2.95 x 10(7) S min cm(-3)). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm(-2) current density. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 44
页数:9
相关论文
共 50 条
  • [1] A high performance polytetrafluoroethene/Nafion composite membrane for vanadium redox flow battery application
    Teng, Xiangguo
    Dai, Jicui
    Su, Jing
    Zhu, Yongming
    Liu, Haiping
    Song, Zhiguang
    JOURNAL OF POWER SOURCES, 2013, 240 : 131 - 139
  • [2] Sulfonated Graphene Oxide/Nafion Composite Membrane for Vanadium Redox Flow Battery
    Kim, Byung Guk
    Han, Tae Hee
    Cho, Chang Gi
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (12) : 9073 - 9077
  • [3] Nafion-sulfonated organosilica composite membrane for all vanadium redox flow battery
    Xiangguo Teng
    Jie Lei
    Xuecai Gu
    Jicui Dai
    Yongming Zhu
    Faqiang Li
    Ionics, 2012, 18 : 513 - 521
  • [4] Nafion-sulfonated organosilica composite membrane for all vanadium redox flow battery
    Teng, Xiangguo
    Lei, Jie
    Gu, Xuecai
    Dai, Jicui
    Zhu, Yongming
    Li, Faqiang
    IONICS, 2012, 18 (05) : 513 - 521
  • [5] Ultra-thin polytetrafluoroethene/Nafion/silica composite membrane with high performance for vanadium redox flow battery
    Teng, Xiangguo
    Dai, Jicui
    Bi, Fangyuan
    Yin, Geping
    JOURNAL OF POWER SOURCES, 2014, 272 : 113 - 120
  • [6] Effect of nafion membrane thickness on performance of vanadium redox flow battery
    Sanghyun Jeong
    Lae-Hyun Kim
    Yongchai Kwon
    Sunhoe Kim
    Korean Journal of Chemical Engineering, 2014, 31 : 2081 - 2087
  • [7] Effect of nafion membrane thickness on performance of vanadium redox flow battery
    Jeong, Sanghyun
    Kim, Lae-Hyun
    Kwon, Yongchai
    Kim, Sunhoe
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2014, 31 (11) : 2081 - 2087
  • [8] Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system
    Lee, Kwan Ju
    Chu, Young Hwan
    VACUUM, 2014, 107 : 269 - 276
  • [9] Modified Nafion Membrane in Vanadium Redox Flow Battery
    Yang, Haoling
    Xu, Kunyu
    Zhang, Qi
    Tao, Liang
    Yang, Zihao
    Dong, Zhaoxia
    PROGRESS IN CHEMISTRY, 2023, 35 (11) : 1595 - 1612
  • [10] Nafion/Graphene Oxide Layered Structure Membrane for the Vanadium Redox Flow Battery
    Shul, Yong Gun
    Chu, Young Hwan
    SCIENCE OF ADVANCED MATERIALS, 2014, 6 (07) : 1445 - 1452