Prediction of FFR from IVUS Images Using Machine Learning

被引:5
作者
Kim, Geena [1 ]
Lee, June-Goo [3 ]
Kang, Soo-Jin [2 ]
Ngyuen, Paul [1 ]
Kang, Do-Yoon [2 ]
Lee, Pil Hyung [2 ]
Ahn, Jung-Min [2 ]
Park, Duk-Woo [2 ]
Lee, Seung-Whan [2 ]
Kim, Young-Hak [2 ]
Lee, Cheol Whan [2 ]
Park, Seong-Wook [2 ]
Park, Seung-Jung [2 ]
机构
[1] Regis Univ, Coll Comp & Informat Sci, Denver, CO USA
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Cardiol, Seoul, South Korea
[3] Asan Inst Life Sci, Biomed Engn Res Ctr, Seoul, South Korea
来源
INTRAVASCULAR IMAGING AND COMPUTER ASSISTED STENTING AND LARGE-SCALE ANNOTATION OF BIOMEDICAL DATA AND EXPERT LABEL SYNTHESIS | 2018年 / 11043卷
关键词
Machine learning; Fractional flow reserve; Intravascular ultrasound; Extreme gradient boost; Deep neural network; Fully convolutional neural network; FRACTIONAL FLOW RESERVE; CORONARY; SEVERITY;
D O I
10.1007/978-3-030-01364-6_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a machine learning approach for predicting fractional flow reserve (FFR) from intrayscular ultrasound images (IVUS) in coronary arteries. IVUS images and FFR measurements were collected from 1744 patients and 1447 lumen and plaque segmentation masks were generated from 1447 IVUS images using an automatic segmentation model trained on separate 70 IVUS images and minor manual corrections. Using total 114 features from the masks and general patient informarion, we trained random forest (RF), extreme gradient boost (XGBoost) and artificial neural network (ANN) models for a binary classification of FFR-80 threshold (FFR < 0.8 v.s. FFR > 0.8) for comparison. The ensembled XGBoost models evaluated in 290 unseen cases achieved 81% accuracy and 70% recall.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 14 条
[1]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[2]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[3]   Fractional Flow Reserve-Guided PCI versus Medical Therapy in Stable Coronary Disease [J].
De Bruyne, Bernard ;
Pijls, Nico H. J. ;
Kalesan, Bindu ;
Barbato, Emanuele ;
Tonino, Pim A. L. ;
Piroth, Zsolt ;
Jagic, Nikola ;
Mobius-Winckler, Sven ;
Rioufol, Gilles ;
Witt, Nils ;
Kala, Petr ;
MacCarthy, Philip ;
Engstrom, Thomas ;
Oldroyd, Keith G. ;
Mavromatis, Kreton ;
Manoharan, Ganesh ;
Verlee, Peter ;
Frobert, Ole ;
Curzen, Nick ;
Johnson, Jane B. ;
Jueni, Peter ;
Fearon, William F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (11) :991-1001
[4]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[5]   Deep Learning in Medical Imaging: General Overview [J].
Lee, June-Goo ;
Jun, Sanghoon ;
Cho, Young-Won ;
Lee, Hyunna ;
Kim, Guk Bae ;
Seo, Joon Beom ;
Kim, Namkug .
KOREAN JOURNAL OF RADIOLOGY, 2017, 18 (04) :570-584
[6]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[7]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[8]   EXPERIMENTAL BASIS OF DETERMINING MAXIMUM CORONARY, MYOCARDIAL, AND COLLATERAL BLOOD-FLOW BY PRESSURE MEASUREMENTS FOR ASSESSING FUNCTIONAL STENOSIS SEVERITY BEFORE AND AFTER PERCUTANEOUS TRANSLUMINAL CORONARY ANGIOPLASTY [J].
PIJLS, NHJ ;
VANSON, JAM ;
KIRKEEIDE, RL ;
DEBRUYNE, B ;
GOULD, KL .
CIRCULATION, 1993, 87 (04) :1354-1367
[9]   Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses [J].
Pijls, NHJ ;
DeBruyne, B ;
Peels, K ;
VanderVoort, PH ;
Bonnier, HJRM ;
Bartunek, J ;
Koolen, JJ .
NEW ENGLAND JOURNAL OF MEDICINE, 1996, 334 (26) :1703-1708
[10]   ImageNet Large Scale Visual Recognition Challenge [J].
Russakovsky, Olga ;
Deng, Jia ;
Su, Hao ;
Krause, Jonathan ;
Satheesh, Sanjeev ;
Ma, Sean ;
Huang, Zhiheng ;
Karpathy, Andrej ;
Khosla, Aditya ;
Bernstein, Michael ;
Berg, Alexander C. ;
Fei-Fei, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) :211-252