The generalized connectivity of complete bipartite graphs

被引:0
作者
Li, Shasha [1 ]
Li, Wei
Li, Xueliang
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
k-connectivity; complete bipartite graph; edge-disjoint spanning trees;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a nontrivial connected graph of order n, and k an integer with 2 <= k <= n. For a set S of k vertices of G, let kappa(S) denote the maximum number l of edge-disjoint trees T-1, T-2,...,T-l in G such that V(T-i) boolean AND V(T-j) = S for every pair i, j of distinct integers with 1 <= i, j <= l. Chartrand et al. generalized the concept of connectivity as follows: The k-connectivity, denoted by kappa(k)(G), of G is defined by kappa(k)(G) =min{kappa(S)}, where the minimum is taken over all k-subsets S of V(G). Thus kappa(2)(G) = kappa(G), where kappa(G) is the connectivity of G. Moreover, kappa(n)(G) is the maximum number of edge-disjoint spanning trees of G. This paper mainly focus on the k-connectivity of complete bipartite graphs K-a,K-b, where 1 <= a <= b. First, we obtain the number of edge-disjoint spanning trees of K-a,K-b, which is lfloor ab/a+b-1rfloor, and specifically give the lfloor ab/a+b-1rfloor edge-disjoint spanning trees. Then, based on this result, we get the k-connectivity of K-a,K-b for all 2 <= k <= a + b. Namely, if k > b - a + 2 and a - b + k is odd then kappa(k)(K-a,K-b) = a+b-k+1/2 + lfloor (a-b+k-1)(b-a+k-1)/4(k-1)rfloor, if k > b - a + 2 and a - b + k is even then kappa(k)(K-a,K-b) = a+b-k/2 + lfloor(a-b+k)(b-a+k)/4(k-1)rfloor, and if k <= b - a + 2 then kappa(k)(K-a,K-b) = a.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 50 条
  • [41] Kp,q-factorization of complete bipartite graphs
    Beiliang Du
    Jian Wang
    [J]. Science in China Series A: Mathematics, 2004, 47 : 473 - 479
  • [42] Heterochromatic tree partition numbers for complete bipartite graphs
    Chen, He
    Jin, Zemin
    Li, Xueliang
    Tu, Jianhua
    [J]. DISCRETE MATHEMATICS, 2008, 308 (17) : 3871 - 3878
  • [43] Signed mixed dominating functions in complete bipartite graphs
    Shan, Erfang
    Zhao, Yancai
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (04) : 712 - 721
  • [44] Linear k-arboricity of complete bipartite graphs
    Guo, Zhiwei
    Zhao, Haixing
    Mao, Yaping
    [J]. UTILITAS MATHEMATICA, 2020, 114 : 295 - 308
  • [45] Decomposition of Complete Bipartite Even Graphs into Closed Trails
    Mirko Horňák
    Mariusz Woźniak
    [J]. Czechoslovak Mathematical Journal, 2003, 53 : 127 - 134
  • [46] Kp,q-factorization of complete bipartite graphs
    Du, BL
    Wang, J
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (03): : 473 - 479
  • [47] Radio Number of Complete Bipartite Graphs and Even Cycles
    Cui, Linlin
    Li, Feng
    [J]. 2024 5TH INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE, ICTC 2024, 2024, : 122 - 127
  • [48] New formula for the sum number for the complete bipartite graphs
    Pyatkin, AV
    [J]. DISCRETE MATHEMATICS, 2001, 239 (1-3) : 155 - 160
  • [49] The linear t-arboricity of complete bipartite graphs
    Zuo, Liancui
    Shang, Chunhong
    Zhang, Shaoqiang
    He, Shengjie
    [J]. ARS COMBINATORIA, 2018, 137 : 355 - 364
  • [50] THE L(2,1)-LABELING ON TOTAL GRAPHS OF COMPLETE BIPARTITE GRAPHS
    Mihai, Gabriela
    [J]. MATHEMATICAL REPORTS, 2010, 12 (04): : 351 - 357