The generalized connectivity of complete bipartite graphs

被引:0
|
作者
Li, Shasha [1 ]
Li, Wei
Li, Xueliang
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
k-connectivity; complete bipartite graph; edge-disjoint spanning trees;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a nontrivial connected graph of order n, and k an integer with 2 <= k <= n. For a set S of k vertices of G, let kappa(S) denote the maximum number l of edge-disjoint trees T-1, T-2,...,T-l in G such that V(T-i) boolean AND V(T-j) = S for every pair i, j of distinct integers with 1 <= i, j <= l. Chartrand et al. generalized the concept of connectivity as follows: The k-connectivity, denoted by kappa(k)(G), of G is defined by kappa(k)(G) =min{kappa(S)}, where the minimum is taken over all k-subsets S of V(G). Thus kappa(2)(G) = kappa(G), where kappa(G) is the connectivity of G. Moreover, kappa(n)(G) is the maximum number of edge-disjoint spanning trees of G. This paper mainly focus on the k-connectivity of complete bipartite graphs K-a,K-b, where 1 <= a <= b. First, we obtain the number of edge-disjoint spanning trees of K-a,K-b, which is lfloor ab/a+b-1rfloor, and specifically give the lfloor ab/a+b-1rfloor edge-disjoint spanning trees. Then, based on this result, we get the k-connectivity of K-a,K-b for all 2 <= k <= a + b. Namely, if k > b - a + 2 and a - b + k is odd then kappa(k)(K-a,K-b) = a+b-k+1/2 + lfloor (a-b+k-1)(b-a+k-1)/4(k-1)rfloor, if k > b - a + 2 and a - b + k is even then kappa(k)(K-a,K-b) = a+b-k/2 + lfloor(a-b+k)(b-a+k)/4(k-1)rfloor, and if k <= b - a + 2 then kappa(k)(K-a,K-b) = a.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 50 条
  • [21] Signed domatic numbers of the complete bipartite graphs
    Volkmann, L
    UTILITAS MATHEMATICA, 2005, 68 : 71 - 77
  • [22] OPTIMAL ORIENTATIONS OF SUBGRAPHS OF COMPLETE BIPARTITE GRAPHS
    Lakshmi, R.
    Rajasekaran, G.
    Sampathkumar, R.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (01) : 19 - 29
  • [23] A note on the thickness of some complete bipartite graphs
    Hu, Siwei
    Chen, Yichao
    ARS MATHEMATICA CONTEMPORANEA, 2018, 14 (02) : 329 - 344
  • [24] Enumeration for spanning forests of complete bipartite graphs
    Jin, YL
    Liu, CL
    ARS COMBINATORIA, 2004, 70 : 135 - 138
  • [25] ON THE BAR VISIBILITY NUMBER OF COMPLETE BIPARTITE GRAPHS
    Cao, Weiting
    West, Douglas B.
    Yang, Yan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 2234 - 2248
  • [26] Regular orientable embeddings of complete bipartite graphs
    Kwak, JH
    Kwon, YS
    JOURNAL OF GRAPH THEORY, 2005, 50 (02) : 105 - 122
  • [27] The Thickness of Some Complete Bipartite and Tripartite Graphs
    Hu, Si-wei
    Chen, Yi-chao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (04): : 1001 - 1014
  • [28] Complete bipartite graphs with a unique regular embedding
    Jones, Gareth
    Nedela, Roman
    Skoviera, Martin
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (02) : 241 - 248
  • [29] Decomposition of complete bipartite graphs into paths and cycles
    Jeevadoss, S.
    Muthusamy, A.
    DISCRETE MATHEMATICS, 2014, 331 : 98 - 108
  • [30] Characterization of the Imbalance Problem on Complete Bipartite Graphs
    Ge, Steven
    Itoh, Toshiya
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022, 2022, 13571 : 55 - 66